
TAPIR: A Software Toolkit for Approximating and Adapting
POMDP Solutions Online

Dimitri Klimenko, Joshua Song, and Hanna Kurniawati
Robotics Design Laboratory

School of Information Technology and Electrical Engineering
University of Queensland, Australia

{dimitri.klimenko@uqconnect, mun.song@uqconnect, hannakur@uq}.edu.au

Abstract

One of the fundamental challenges in the de-
sign of autonomous robots is to reliably com-
pute motion strategies in spite of significant un-
certainty about sensor reliability, control errors,
and unpredicatable events. The Partially Ob-
servable Markov Decision Process (POMDP) is
a general and mathematically principled frame-
work for this type of problem. Although exact
solutions are computationally intractable, mod-
ern approximate POMDP solvers have made
POMDP-based approaches practical for robotics
tasks. However, almost all existing POMDP-
based planning software suffers from at least two
major issues. Firstly, most POMDP solvers re-
quire the model to be known a priori and remain
constant during runtime, and secondly, quite a
lot of the existing software is not very user-
friendly. This paper presents the Toolkit for ap-
proximating and Adapting POMDP solutions In
Real time (TAPIR), which tackles both prob-
lems. The need for a constant, fully known
POMDP model is averted by implementing the
recent Adaptive Belief Tree (ABT) algorithm,
while user-friendliness is ensured by a well-
documented modular design, which also includes
interfaces for the commonly-used Robotics Op-
erating System (ROS) framework, and the high
fidelity simulator V-REP. TAPIR can be down-
loaded from http://robotics.itee.uq.
edu.au/˜tapir. To the best of our knowl-
edge, TAPIR is the first software toolkit that di-
rectly addresses the aforementioned problems.

1 Introduction
Uncertainty is ubiquitous. For instance, GPS signals are of-
ten blocked, wind and currents accentuate control errors in
aerial and marine robots, people may move unpredictably
and block a robot’s path, etc. Despite such uncertainties, an
autonomous robot must be able to compute motion strate-
gies that can consistently and efficiently accomplish the
given tasks. Therefore, motion planning under uncertainty
is critical for reliable operation of autonomous robots.

The Partially Observable Markov Decision Process
(POMDP) is a general and mathematically principled
framework for motion planning under uncertainty [Kael-
bling et al., 1998]. Due to uncertainty, a robot never knows
its exact state, though it can infer a set of possible states
of where it might be. POMDP-based approaches repre-
sent these sets of possible states as probability distributions
over the state space, called beliefs, and systematically rea-
son over the belief space (i.e. the set of all possible beliefs);
as a consequence, POMDPs naturally combine uncertainty
in robot controls, sensor measurements, and limited infor-
mation and understanding about the environment. More-
over, POMDPs include a well-defined notion of an optimal
motion strategy which serves as the overarching goal.

Although solving a POMDP problem exactly is compu-
tationally intractable [Papadimitriou and Tsitsiklis, 1987],
recent work has shown that by trading optimality with ap-
proximate optimality for speed, POMDPs can be made
practical [Kurniawati et al., 2008; Silver and Veness, 2010;
Smith and Simmons, 2005]. In fact, over the past decade,
POMDP algorithms have developed from approaches that
take days to solve problems with only a dozen states [Kael-
bling et al., 1998] to some that take only a few min-
utes to generate good solutions for problems with 10-
dimensional continuous state space [Bai et al., 2012; Kur-
niawati et al., 2012]. These improvements have brought
POMDPs into the realm of practicality for robot motion
planning [Horowitz and Burdick, 2013; Koval et al., 2014;
Temizer et al., 2010].

Despite these tremendous advances in POMDP-based
motion planners, two major problems have stood as a
barrier to their adoption by the wider robotics commu-
nity. First is that most POMDP-based planners require the
POMDP model to be completely known a priori and to re-
main the same during runtime. This requirement can often
cause significant difficulties when the system has many un-
knowns, such as when a robot operates in an a priori un-
known environment. For these kinds of problems, most
POMDP-based motion planners are forced to model all
unknowns (e.g. all possible environments) as part of the
POMDP model, resulting in an extremely large POMDP
problem that is infeasible to solve by even the best solver
today. The second problem is the lack of more user-friendly
POMDP solvers for robotics problems. In addition to the

http://robotics.itee.uq.edu.au/~tapir
http://robotics.itee.uq.edu.au/~tapir

modeling complexity, most implementations of POMDP
solvers provide only a command-line interface; such inter-
faces are not very intuitive for robotics problems. Although
one can, in principle, extend a command-line interface to
a graphical one, this extra work is often undesirable for
someone new to POMDPs or those who only want to use
POMDPs as a small part of a larger robotics system.

To address both of the aforementioned problems, we in-
troduce a software toolkit, called TAPIR (Toolkit for ap-
proximating and Adapting POMDP solutions In Real time).
TAPIR is an implementation of our recent algorithm, Adap-
tive Belief Tree (ABT) [Kurniawati and Yadav, 2013]. ABT
can find a good approximate solution and adapt POMDP
solutions online in response to changes in the POMDP
model. This ability to adapt POMDP solutions online en-
ables us to relax the requirement that the POMDP model
must be known a priori, and must remain constant at run-
time. To handle the second problem, TAPIR includes high-
quality documentation, and provides problem templates for
common robotics tasks, i.e. target-finding and environmen-
tal sampling problems, to ease users through the process
of defining a POMDP model. These templates also serve
as illustrative examples of how a POMDP can be defined
and implemented in TAPIR. Furthermore, to ease roboti-
cists in applying POMDP techniques to their robotics sys-
tem, TAPIR provides a programming interface with the
commonly used Robotics Operating System (ROS) frame-
work [Quigley et al., 2009] and the V-REP robotics simu-
lator [E. Rohmer, 2013].

2 Related work
2.1 POMDP Background

A POMDP model is a tuple 〈S,A,O,T,Z,R,b0,γ〉, where S
is the set of states, A is the set of actions, and O is the set
of observations. At each step, the agent is in a state s ∈ S,
takes an action a ∈ A, and moves from s to an end state
s′ ∈ S. To represent uncertainty in the effect of performing
an action, the system dynamic from s to s′ is represented as
a conditional probability function T (s,a,s′) = f (s′|s,a). To
represent sensing uncertainty, the observation that may be
perceived by the agent after performing action a and ends at
state s′, is represented as a conditional probability function
Z(s′,a,o) = f (o|s′,a). At each step, the agent receives a
reward R(s,a), if it takes action a from state s. The agent’s
goal is to choose a suitable sequence of actions that will
maximize its expected total reward, while the agent’s ini-
tial belief is denoted as b0. When the sequence of actions
has infinite length, we specify a discount factor γ ∈ (0,1)
so that the total reward is finite and the problem is well de-
fined.

In many problems with large state space, an explicit rep-
resentation of the conditional probability functions T and
Z may not be available. However, one can use a generative
model, which is a black box simulator that outputs an ob-
servation perceived, reward received, and next state visited
when the agent performs the input action from the input
state.

A POMDP planner computes an optimal policy that max-
imizes the agent’s expected total reward. A POMDP pol-
icy π : B → A assigns an action a to each belief b ∈ B,
where B is the belief space. A policy π induces a value
function V (b,π) which specifies the expected total reward
of executing policy π from belief b, and is computed as
V (b,π) = E[∑∞

t=0 γ tR(st ,at)|b,π]. A policy can be repre-
sented in a variety of ways, e.g. by a policy graph [Bai et
al., 2010], or by pairs of belief and action [Thrun, 2000].

To execute a policy π , an agent executes action se-
lection and belief update repeatedly. For example, if
the agent’s current belief is b, it selects the action re-
ferred to by a = π(b). After the agent performs action a
and receives an observation o according to the observa-
tion function Z, it updates b to a new belief b′ given by
b′(s′) = τ(b,a,o) = ηZ(s′,a,o)

∫
s∈S T (s,a,s′)ds where η is

a normalization constant. When a generative model is used,
a belief is represented as a set of particles and the above be-
lief update can be approximated using a particle filter.

2.2 Related POMDP Solvers
The past few years have seen tremendous advances in the
capability of both offline and online POMDP solvers [Kur-
niawati et al., 2008; Silver and Veness, 2010; Smith and
Simmons, 2005]. Offline solvers compute the entire policy
a priori before the policy must be executed, while exist-
ing online solvers compute the policy for the current belief
during execution of the policy. Advances in both kinds of
solvers have enabled POMDP-based approaches to start be-
ing practical for robot motion planning problems.

Not long ago, the best solver could take hours to com-
pute exact solutions to POMDPs with only a dozen states.
In 2003, Pineau, et al. introduced the first offline POMDP
solver capable of computing a good approximate solu-
tion for a benchmark problem with 870 states [Pineau et
al., 2003], albeit taking 50 hours. Key to this solver is
sampling—it takes a representative sample of the belief
space, and plans with respect to only this set of sam-
pled beliefs rather than the entire belief space. The suc-
cess of this approach depends heavily on quickly sam-
pling a small but representative set of beliefs. Since then,
more suitable sampling strategies [Kurniawati et al., 2008;
Smith and Simmons, 2004; Smith and Simmons, 2005;
Spaan and Vlassis, 2005] have been proposed, resulting in
substantial increases in solving speed (as illustrated in Fig-
ure 1) and bringing POMDPs into the realm of the practical
for robot motion planning problems.

Many works [Hauser, 2010; He et al., 2010; Silver and
Veness, 2010] have proposed advanced online solvers as
well. As with offline solvers, the fastest online POMDP
solvers [Silver and Veness, 2010] today are based on sam-
pling. Most of these solvers represent the sampled belief
in a belief tree. A belief tree is a tree where each node
represents a belief and each edge represents an action–
observation pair. A parent–child relation in a belief tree
means that the belief that corresponds with the parent node
evolves to the belief that corresponds with the child node
whenever the action and observation that correspond to the

PBVI

Pineau,

et. al.

HSVI

Smith &

Simmons

Perseus

Spaan &

Vlassis

HSVI2

Smith &

Simmons

SARSOP

Kurniawati,

et. al.

Time (s)

Reward

180, 880 10, 113 1, 670 24 6

−6.13−6.36−6.17−6.17−9.18

1
sec

Figure 1: Performance of several offline POMDP solvers on a
benchmark problem called Tag, which is a robot target-finding
problem with 870 states. The higher the reward, the better the
solution.

edge between the parent and child nodes have been applied
and perceived. Sampling in a belief tree is performed by
sampling which node to expand, and which action and ob-
servation to use in expanding that node.

In general, all of the aforementioned offline and online
solvers assume that the POMDP model is known a priori
and does not change during execution of the policy. In or-
der to handle changes in the POMDP model, these solvers
would be forced to discard prior computation and recom-
pute the policy from scratch, wasting all of the previosuly
expended computation effort. In contrast, ABT can reuse
and improve the policy, and is capable of runtime policy
updates.

Prior work [Kurniawati and Patrikalakis, 2012] has pro-
posed a point-based method to modify a pre-computed pol-
icy. However, the time it needs to update a policy is too
long to be practical for a fast-changing environment, and
the types of model changes that can be handled are lim-
ited to changes in the transition, observation, and reward
functions. In contrast, ABT can handle any type of model
change except for changes in the number of state variables,
and is fast enough to update a policy online.

3 The Algorithm: ABT
Algorithm 1 presents an overview of ABT; the details of
this algorithm are presented in [Kurniawati and Yadav,
2013]. For completeness, we present key components of
the algorithm in this section.

ABT is an online and anytime POMDP solver capable of
handling large and even continuous state spaces. It uses a
generative model, which is a black box simulator that en-
ables the solver to generate experiences of the system dy-
namics and behavior at various states. By using a gener-
ative model, ABT does not need an explicit model of the
probability distributions for transitions and observations,
which can often be difficult to obtain for problems with
large state spaces.

Unlike most solvers, ABT can update the policy as
necessary during runtime in response to changes in the
POMDP model. This update capability is founded on the
following two observations. First, a non trivial change in

Algorithm 1 Adaptive Belief Tree (initial POMDP model
P0, initial belief b0)

PREPROCESS (OFFLINE)
(H, T)← GeneratePolicy(P0, b0).
Let S′ be the set of all sampled states in H,

i.e., S′←{hi.s | i ∈ [0, |h|],h ∈ H}
Let R be a spatial index (e.g. a range tree) representing
S′.
b← b0.

RUNTIME (ONLINE)
while running do

if Pt 6= Pt−1 {Pi is the POMDP model at time-i.} then
H ′← IdentifyAffectedEpisodes(Pt−1, Pt , H,R, T).

ReviseEpisodes(Pt , T , b, H ′).
UpdateValues(T , b, H ′).

while there is still time do
ImprovePolicy(Pt , H,R, T , b).

a← Get best action in T from b.
Perform action a.
o← Get observation.
b← τ(b,a,o).
t← t +1.

the POMDP model must be directly reflected as a change
in the robot’s behaviour at a particular set of states. Sec-
ond, a change in a single optimal mapping π∗(b) from a
belief b ∈ B, may only affect the optimal policy π∗(·) at b
or at other beliefs that can reach b. Using the insight from
these observations, ABT represents the policy as pairs of
belief and action, and explicitly represents the relation be-
tween beliefs, states, and their reachability information, so
that it can quickly identify the subset of the policy affected
by changes in the POMDP model and quickly update the
policy whenever necessary.

To explicitly maintain the aforementioned relations,
ABT embeds the policy in an augmented belief tree—
denoted as T . An augmented belief tree is a belief tree
where each of its paths is augmented by a set of sampled
state trajectories. As with any belief tree, each node in the
augmented belief tree T represents a belief; for the sake
of brevity we refer to the node and the belief it represents
interchangeably. The root of T represents the given initial
belief b0. Each edge bb′ in T is labelled by a pair of action
and observation a–o, where a ∈ A and o ∈ O. An edge bb′
with label a–o means that when a robot at belief b performs
action a and perceives observation o, its next belief would
be b′, i.e. b′ = τ(b,a,o) where b,b′ ∈ B. Unlike most be-
lief trees, each path in T is additionally augmented with a
set of sampled state trajectories. A sampled state trajectory
is often called an episode, denoted as h. It is a sequence
of quadruples (s,a,o,r) of state s ∈ S, action a ∈ A, ob-
servation o ∈ O, and immediate reward r = R(s,a). ABT
maintains a set of all sampled episodes, which we denote
as H. Figure 2 illustrates an augmented belief tree.

To construct the policy, ABT samples episodes. To sam-

(s0, a0, o0, r0)

(s1, a1, o1, r1)

...

...

(sn,−,−, rn)

b0
s0

a0

o0
s1

a1
o1
...

... ...

sn

h ∈ H

...
...

Figure 2: An augmented belief tree T . Illustration of an associ-
ation between an episode h ∈ H and a path in T .

ple an episode h, ABT samples an initial state s0 ∈ S from
a given initial belief b0 and selects an action a0 ∈ A. The
details of action selection are presented in [Kurniawati and
Yadav, 2013]; they are outside of the scope of this paper.
After an action a0 is selected, ABT calls the generative
model to sample an observation o0 ∈ O, an immediate re-
ward r0, and a next state s1 when the agent performs a0 at
s0. ABT inserts the quadruple (s0,a0,o0,r0) as the first el-
ement of h, and iteratively repeats the above steps starting
from s1. The iteration stops after either a terminal state is
reached, or some other stopping criterion is met (e.g. the
sampling reaches a previously unvisited node in the belief
tree, or h has exceeded a certain length). As a last step,
ABT inserts (s,–,–,r) as the last element of h, where s is the
next state sampled by the last call to the generative model
and r = R(s) is the reward of being at state s. For a termi-
nal state this reward value R(s) can be calculated directly
from the model, but if the sampled episode stops before a
terminal state is reached ABT can also use a heuristic esti-
mate in order to estimate the value of future rewards. One
simple and general-purpose heuristic is the rollout, which
is a widely-used technique in sampling-based algorithms,
e.g. POMCP [Silver and Veness, 2010]. In ABT this can
be done by continuing to sample as per the above approach
while only storing the total discounted reward. This saves a
significant amount of memory compared to explicitly stor-
ing a longer episode and all of the belief nodes visited dur-
ing that episode. An improved approach [Kurniawati and
Yadav, 2013], which is the one that is typically used in the
provided software, is to use a solution to a simplified ver-
sion of the problem (e.g. a fully observable MDP) to derive
a value estimate. Examples of this approach are given in
section 5.2.

Let H be the set of sampled episodes. The paths
in the augmented belief tree T are associated with the
episodes in H. Suppose φ is a path in T and φ =
〈b0,a0,o0, . . . ,an,on,bn+1〉, where bi,bn+1 ∈ B, ai ∈ A, and
oi ∈ O for i ∈ [0,n]. Then, φ is associated with the set of
episodes Hφ ⊆ H which consists of all episodes in H that
contains 〈(s0,a0,o0,∗), . . . , (∗,an,on,∗),(∗,–,–,∗)〉, where
s0 is any state sampled from b0, ai and oi (i ∈ [0,n]) are the

corresponding actions and observations in φ , and ∗ means
any relevant value. Figure 2 illustrates the relation between
an episode in H and a path in the belief tree T . Each
episode in H corresponds to exactly one path of T , but a
path of T may be associated with many episodes.

Each belief in T is represented by a set of particles,
which is comprised of the states in the corresponding
quadruples of the corresponding episodes. Suppose b is a
node at level-l of T (the root has level 0). Suppose Φ(b) is
the set of all paths in T that starts from the root and contains
the node b, and Hb =

⋃
φ∈Φ(b) Hφ . Then, b is approximated

by the set of particles {hl .s | h ∈ Hb}, where the notation
hl .s refers to state in the lth quadruple of an episode h ∈Hb
(the quadruples are indexed from 0).

The policy π of ABT is embedded in the augmented be-
lief tree T , with

π(b) = argmax
a∈A(E,b)

Q̂(b,a) (1)

and value V (b,π) = max
a∈A(E,b)

Q̂(b,a) (2)

where b ∈ B, E is the set of edges in T , and A(E,b)⊆ A is
the set of actions that have been used to expand b, i.e. the
actions that comprise the labels of the out-edges of b in T .
The value Q̂(b,a) denotes the estimated Q-value; the true
Q-value Q(b,a) is the value of performing action a from
belief b and continuing optimally afterwards, i.e.

Q(b,a) = R(b,a)+ γ ∑
o∈O

τ(b,a,o)V ∗(τ(b,a,o)), (3)

where V ∗(b) =V (b,π∗) is the optimal value function - the
expected value of following an optimal policy from an ini-
tial belief b. ABT estimates Q(b,a) as

Q̂(b,a) =
1∣∣H(b,a)
∣∣ ∑

h∈H(b,a)

V (h, l) (4)

where H(b,a) ⊆ H is the set of all episodes associated with
all paths in T that start from b0 and contain the sequence
(b,a), l is the depth level of b in T , and V (h, l) is the value
of an episode h starting from the lth element. V (h, l) is
computed as

V (h, l) =
|h|
∑
i=l

γ
i−lR(hi.s,hi.a) (5)

where γ is the discount factor and R is the reward function.
Note that each state in the lth quadruple of each episode
in H(b,a) is a particle of b and the action in that quadruple
is the action a. Therefore, it is clear that Q̂(b,a) approxi-
mates the first component of Q(b,a) well. However, it may
seem odd that eq. (4)-(5) can approximate the second com-
ponent of Q(b,a), which is ∑o∈O τ(b,a,o)V ∗(τ(b,a,o)), as
V (h, l +1) for different h may correspond to different poli-
cies. It turns out by using an appropriate action selection
strategy when sampling the episodes, one can ensure that as
the number of episodes in H(b,a) increases, V (h, l +1) con-
verges to ∑o∈O τ(b,a,o)V ∗(τ(b,a,o)) in probability, and
hence ABT’s policy converges to the optimal policy in
probability [Kurniawati and Yadav, 2013].

The above policy representation and value calculation
enables ABT to quickly identify and update the policy fol-
lowing changes in the POMDP model. To identify which
parts of the policy need to be updated, ABT only needs to
find the episodes in H that contain states that are affected
by the changes in the POMDP model. To update the pol-
icy, ABT disconnects the association between each affected
episode h and its corresponding nodes in T , revises h ac-
cording to the new POMDP model, and associates it back
with the nodes of T (which may be different than the pre-
viously associated path). Then, ABT updates the values
and Q-values of the beliefs that have been newly associ-
ated or disassociated with h. Using eq. (2)-(5), the value
and Q-value revisions require only simple arithmetic cal-
culation. With proper data structures these values can be
updated incrementally, and the processes of finding the af-
fected episodes and of association/disassociation can both
be done quickly.

4 The Software Toolkit: TAPIR
The TAPIR software package is provided as a C++
source code package, licensed under the GNU General
Public License v2.0; it can be downloaded from the
TAPIR website, http://robotics.itee.uq.edu.
au/˜tapir/. This source code package contains a full,
modular, and customizable implementation of the ABT al-
gorithm. Also included (in the directory src/problems)
are implementations for two example problems - the afore-
mentioned Tag problem, as well as another common bench-
mark problem called RockSample [Smith and Simmons,
2004]. All of the TAPIR source code comes with docu-
mentation comments, which are used to generate detailed
HTML documentation (via Doxygen). This documenta-
tion and a couple of quick start guides are available on
the TAPIR website. In this section we will give a brief
overview of the structure of TAPIR, while the next section
will provide a quick guide to its usage.

The core of TAPIR is the implementation of ABT, which
is located in the directory src/solver within the source
package. Directly in this directory are source files contain-
ing concrete classes, which are implementations of essen-
tial data structures used by ABT, most notably the belief
tree and state trajectories. On the other hand, the subdirec-
tories of src/solver can be considered as “modules”
allowing customization of the ABT algorithm. This modu-
larity is achieved by using abstract base classes to define the
core functionality; this means that default implementations
can be provided while also allowing for the possibility of
custom problem-specific or application-specific implemen-
tations where needed. The key modules in TAPIR are:

• abstract-problem - abstract base classes to de-
fine a generative POMDP model. Further details are
given in Section 5.1.

• value-estimators - estimation of the values of
future beliefs based on the sampled values of the avail-
able actions, as discussed in the previous section. The
default approach, as described by eq. (4)-(5), is sim-

ply to average over all of the episodes passing through
that belief.

• changes - modification of trajectories in response to
changes in the model. The standard provided approach
simply revises an episode by resampling the affected
parts of the episode using the same actions as be-
fore, but with the newly-modified generative POMDP
model instead of the old one.

• indexing - indexing of the states, allowing for ef-
ficient lookup of which states (and hence which tra-
jectories) are affected by a change in the environment.
The default implementation uses an R*-tree, which is
optimized for efficient spatial queries - e.g. all of the
sampled states within a specified geometric region.

• mappings - handles the mapping of actions and ob-
servations to child nodes in the belief tree. Using ab-
stract base classes allows customization of the data
stored at each node and the data structures used to
handle the mappings (e.g. a map for sparsely sampled
children vs. a vector for densely sampled children);
this can also allow for more advanced approaches like
dynamically aggregating similar actions.

• search - handles the sampling policy, which con-
trols how trajectories are sampled inside and out-
side the belief tree. The default behaviour is to use
UCT [Kocsis and Szepesvri, 2006] to select actions
within the belief tree and then to estimate new, previ-
ously unreached belief nodes by using a heuristic es-
timate (typically based on a solution to the underlying
MDP).

• serialization - serialization of the various ABT
classes, so that the state of the algorithm can be saved
and loaded. This can, for example, allows TAPIR to
run ABT offline and later use this precalculated solu-
tion to improve its online performance.

The modular design of TAPIR will help users interested
in developing better POMDP solvers to quickly test their
ideas. For instance, users interested in developing better
sampling strategies only need to modify the search mod-
ule of TAPIR; those interested in developing better policy
adaptation strategies only need to modify the changes
module; etc. TAPIR also provides interfaces to assist users
who only want to use POMDPs to solve their problems, as
detailed in the next section.

5 Using TAPIR
5.1 Defining a Problem
As stated in the previous section, the
abstract-problem module defines the basic in-
terface for implementing a new POMDP problem. The
core of this module is the abstract base class Model,
which represents a black box POMDP model in its entirety.
In this section we will give a quick overview of how a new
problem can be defined via the TAPIR interface; a more
comprehensive guide is available via the TAPIR website.

http://robotics.itee.uq.edu.au/~tapir/
http://robotics.itee.uq.edu.au/~tapir/

Since ABT is based on a generative POMDP
model, most of the structures in the POMDP tuple
〈S,A,O,T,Z,R,b0,γ〉 are defined implicitly, rather than
explicitly.

• S - states should be instances of a problem-specific
subclass of the abstract class State. Since ABT is
based on sampling, there is no need to explicitly de-
fine which states are in the space; ABT will only ever
consider states that are reachable from the initial be-
lief. This sampling-based approach is also the rea-
son that TAPIR can easily deal with continuous state
spaces. Additionally, the Model should implement
an isTerminal method in order to specify whether
a state is considered to be terminal.

• A - actions should be instances of a problem-specific
subclass of the abstract class Action. Since ABT
must be aware of the possible actions from a given
belief state, the action space cannot be entirely im-
plicit. This is handled by the ActionPool ab-
stract base class, which allows control over which ac-
tions will be tried, and in which order. A useful im-
plementation, EnumeratedActionPool, is pro-
vided, which takes a vector of all of the actions in the
POMDP as an argument, and allows the actions to be
tried in random order, with independent randomiza-
tion at every belief node.

• O - observations should be instances of a problem-
specific subclass of the abstract class Observation.
As with states, since ABT receives observations via
sampling from the generative model, there is no need
to explicitly define which observations are in the
space.

• T , Z, R - the conditional probabilities for state transi-
tions and observations, as well as the reward function,
are all implicitly defined via the generative model.
In particular, the method Model::generateStep
takes a state and an action as an argument, and must re-
turn sampled values for the subsequent next state and
observation, and the associated reward.

• b0 - the initial belief is defined implicitly via the
method Model::sampleAnInitState, which
should return a sampled state from that distribution.

• γ - the discount factor is defined in the Options
instance associated with an instance of Model; this
options class unifies a number of ABT- and TAPIR-
related configuration settings, and allows problem-
specific options to be added as well. TAPIR also
comes with the functionality to read options from the
command line and/or from a text file in INI format,
with the possibility to add problem-specific options for
any individual problem.

To deal with model changes an additional method,
Model::applyChanges, must be implemented in or-
der to inform the ABT algorithm of which states are af-
fected by a change in the model.

The aforementioned aspects cover the core functionality
of Model, although there is some additional functionality
that is important. Many POMDP problems can be solved
much more efficiently by using domain knowledge that is
specific to the problem. TAPIR provides programming in-
terfaces to incorporate such knowledge in some of the crit-
ical components of ABT.

One aspect that is of particular importance is the
choice of a heuristic to estimate the value of sam-
pled episodes that are cut off before a terminal
state is reached; this is controlled via the method
Model::getHeuristicFunction. TAPIR offers a
general-purpose rollout-based heuristic approach which
can be easily used for any problem by implement-
ing Model::getRolloutAction. Custom problem-
specific heuristics can be seen in the implementations for
RockSample and Tag, including approaches based on solv-
ing fully observable versions of the problem.

Additionally, in order to deal with particle depletion ef-
ficiently, a Model should also implement a more sophis-
ticated particle filtering method, which is used to gener-
ate new particles for the current belief whenever there are
not enough particles from the trajectory-based sampling.
A standard implementation based on rejection sampling is
provided, but can be overridden in order to improve effi-
ciency. Examples of custom particle filtering approaches
can be seen in the provided code for both Tag and Rock-
Sample.

The provided example code for Tag and RockSample il-
lustrates how to implement all of the above aspects for a
specific POMDP; further detail on these example problems
is provided in the following section.

5.2 Problem Templates
The source code for the Tag and RockSample problems in
TAPIR serves two purposes. First, it demonstrates how
individual POMDP problems can be implemented in the
TAPIR framework. Second, these two implementations
also serve as templates for broad categories of problems.

Tag – A Template for Target Finding/Tracking
The Tag problem [Pineau et al., 2003] serves as a template
for target finding and target tracking problems, in which the
goal is to locate (and/or follow) a target in spite of limited
sensing capabilities and uncertainty about the target’s mo-
tion. Problems of this kind occur in various real-world sce-
narios, including emergency rescue, security/surveillance,
and in-home care.

Figure 3: The original environ-
ment map of the Tag problem.

In the original Tag
problem [Pineau et al.,
2003], the environment
map is discretized into
29 cells (Figure 3). Ini-
tially, the robot and the
target may be in any
cell with equal proba-

bility. The robot’s control and localization are perfect, but
it can only see the target if the robot is in the same cell as

the target. The target has full observability of the robot’s
position and always moves away from the robot.

In TAPIR’s implementation of the Tag problem, the user
can change the environment map without additional pro-
gramming and change the behavior of the target with rel-
atively little modification to the problem. It also provides
the functionalities to visualise the problem in V-REP. These
features enable users to use TAPIR for robot target/tracking
problems with minimum programming effort.

The implementation of Tag also shows how to imple-
ment the core functionality for target finding/tracking
type of problem, as well as demonstrating some additional
customization for better performance. This includes the im-
plementations of TagModel::generateParticles,
which demonstrate problem-specific particle filtering
methods that are far more efficient than the default general-
purpose rejection sampling approach. Also provided is the
class TagMdpSolver, which demonstrates the use of a
general-purpose MDP solver (in this case policy iteration)
to generate a solution to a fully observable version of the
problem. This solution can then be used as a heuristic
function which will guide the sampling of the ABT
algorithm, which can improve performance compared to
a simple heuristic or to a sampling-based (rollout) heuris-
tic. The MDP-solving code is also included in TAPIR, in
src/problems/shared/policy iteration.cpp.

RockSample – A Template for Environmental
Sampling
The RockSample problem [Smith and Simmons, 2004]
serves as a template for environmental sampling problems.
It models the problem of a Mars rover seeking to collect
samples from valuable rocks. The rover is equipped with a
noisy sensor which it can use to gather information about
the rocks.

RockSample is a scalable benchmark problem in
POMDP. It is parameterized by two numbers, n and k.
Rocksample[n,k] means the robot is operating in an envi-
ronment discretized into n× n cells and there are k rocks
in the environment. Among these rocks, some of them are
good rocks that the robot needs to sample. However, the
robot does not know whether a rock is good or not. It can
perform scanning to check if a rock is good or not, but the
result of this check is not perfect. The robot has perfect
control and localization capabilities. Details of Rocksam-
ple is in [?]

TAPIR’s implementation of RockSample allows users to
change the environment map and the sensing error of the
robot without additional programming. This functionality
enables users to use TAPIR for autonomous environmental
sensing problems with minimum programming effort.

In addition to the basic implementation, the provided
code also illustrates some advanced functionality that can
be used. As with Tag, the RockSample implementa-
tion includes improved particle filtering methods and a
value-estimator heuristic based on full observabil-
ity. However, in the case of RockSample, a significantly
more efficient approach using backward induction is used
to solve the MDP.

The RockSample code also shows how TAPIR can use
history-based sampling strategies and heuristic information
to improve the sampling strategy of ABT. For instance,
PreferredActionsPool implements heuristics simi-
lar to those used in POMCP [Silver and Veness, 2010] -
the idea there is to bias the initial Q-value for certain “pre-
ferred” actions on the basis of domain-specific knowledge
and inference from the history of actions and observations.

5.3 Interface for ROS with V-REP Simulator

Figure 4: An illustration of how TAPIR interacts with sens-
ing and actuation modules via ROS.

To ease the use of POMDP-based approaches in robotics
systems, TAPIR provides an interface such that it can act as
a ROS node. Figure 4 illustrates a typical communication
diagram between TAPIR and sensing and actuation mod-
ules via ROS. The sensor and actuator nodes can be linked
to V-REP (for simulation purposes) or to real devices.

TAPIR has been tested with ROS Hydro on Ubuntu 12.04
and ROS Indigo on Ubuntu 14.04, both with V-REP PRO
EDU V3.1.2. When used with ROS, TAPIR requires Boost
version 1.48 or above, which may conflict with the version
used by ROS Hydro by default on Ubuntu 12.04. Instruc-
tions on resolving this issue can be found in the readme
included in the software package. For convenience, the
TAPIR package also provides a script that automatically re-
solves this problem.

To further enhance accessibility, TAPIR can automat-
ically setup a build system for its use within the ROS
framework. ROS uses a build system called catkin, which
expects the source files to be organised within a catkin
workspace. For users unfamiliar with ROS, tutorials on
setting up a workspace are available on the ROS website
(http://wiki.ros.org/ROS/Tutorials). Expe-
rienced ROS users may compile the TAPIR node manually
using catkin make and launch nodes with roslaunch.
For expedient creation of new projects, TAPIR also pro-
vides a command (make ros) to automatically set up a
workspace, add a symbolic link to the TAPIR source direc-
tory, and create a script, called simulate-ros, which
when called will launch ROS, V-REP and TAPIR.

6 Benchmarking TAPIR
6.1 Setup
To test the performance of TAPIR, we used three
well-known POMDP benchmark problems, i.e.

http://wiki.ros.org/ROS/Tutorials

Tag [Pineau et al., 2003], and two different instances
of RockSample[n,k] [Smith and Simmons, 2004]—
RockSample[7,8] and RockSample[11,11], where the
map has size n× n and k is the number of rocks. Due
to the larger parameter values, RockSample[11,11] has
247,808 states, as compared to the 12,544 states in
RockSample[7,8].

In their default forms, neither Tag nor RockSample in-
volve model changes during runtime. To test the per-
formance of TAPIR when the model changes, we mod-
ified the original Tag, RockSample[7,8], and RockSam-
ple[11,11] by adding and removing obstacles every 2–4
seconds. When an obstacle is added, the size of the state
space decreases; when an obstacle is removed, the size of
the state space increases.

To empirically evaluate the overall performance
of TAPIR, we chose to compare the performance
of TAPIR against POMCP, a state-of-the-art on-
line POMDP solver. For POMCP, we used
the software provided by the authors at http:
//www0.cs.ucl.ac.uk/staff/d.silver/web/
Applications_files/pomcp-1.0.tar.gz.

To calculate the quality of the motion strategies gener-
ated by ABT, we estimated the expected total reward of
using ABT to solve the benchmark problems. To this end,
for each problem, we first ran a few trial runs to determine
the best parameters for ABT to use. We then used the best
parameters for each problem and ran 2,000 simulation runs,
recording the total discounted reward for every run. In each
run, we allowed 1 second of computation time per step. The
estimated expected total reward was then calculated as the
average discounted total reward over all 2,000 runs. We
also used the same procedure to calculate the quality of the
motion strategies generated by POMCP.

All experiments were conducted on a PC with an Intel
Xeon E5-1620 3.6GHz processor and 16GB RAM.

6.2 Results
Table 1 shows the benchmark results on the original prob-
lems. The results indicate that even when the POMDP
model does not change, ABT performs better than POMCP.
The primary reason for this is that POMCP discards prior
results and recomputes the policy from scratch at every
step, while ABT reuses prior results and improves them at
every step.

Table 2 shows results on the modified benchmark prob-
lems where addition and removal of obstacles, which leads
to changes in the size of the state space, happens unpre-
dictably every 2–4 seconds. The results indicate that al-
though TAPIR requires additional overhead to update the
policy, spending time for this overhead is still beneficial.

Overall, TAPIR has a distinct advantage over POMCP
whenever a significant portion of the policy computed so
far can be preserved from one step to the next. This ad-
vantage is clearly visible in both of the provided tests, with
and without any changes in the underlying model. POMCP
would have an advantage in extreme cases where the model
changes so much that essentially the entire policy would

Problem
POMCP TAPIR

Average 95% conf. Average 95% conf.

Tag -7.33 0.24 -6.72 0.24

RockSample
[7,8]

16.92 0.48
21.23 0.19

20.71∗ 0.21∗

RockSample
[11,11]

18.94 0.94
21.36 0.21

20.01∗ 0.23∗

Table 1: Average total discounted reward when the POMDP
model does not change. The computation time per step is 1 sec-
ond. The results of POMCP that are marked with ∗ are the results
as presented in [Silver and Veness, 2010]. We were not able to
generate equivalent results even after extensive parameter adjust-
ments. The POMCP results presented without ∗ are the results we
gathered using the best parameters for POMCP.

Problem
POMCP TAPIR

Average 95% conf. Average 95% conf.

Tag -7.75 0.30 -7.5 0.23

RockSample
[7,8] 17.07 0.21 21.22 0.28

RockSample
[11,11] 17.49 0.24 20.73 0.29

Table 2: Average total discounted reward when the POMDP
model changes every 2–4 seconds. The computation time per step
is 1 second.

have to be recomputed, since POMCP always recomputes
from scratch regardless. However, for such extreme cases
TAPIR also offers the option of replanning from scratch,
while still providing the option of keeping its policy for all
of the intermediate steps between such extreme changes.

6.3 Video Results
We have also provided an example of how TAPIR can in-
terface with V-REP for visualisation purposes.

The first segment of our video submission uses a V-REP
simulation to demonstrate how TAPIR can be integrated
into a larger ROS-based project. It is also an example where
the state space is continuous. A robot needs to monitor
if a worker reaches certain workstations (called zones and
marked with circles) safely, while minimizing movement
cost and avoiding collisions with obstacles and the worker.
The robot does not have a prior map of the environment,
does not know the exact initial position of the worker, and
does not know the worker’s walking speed nor the time the
worker spends at certain stations. The robot scans the envi-
ronment using a laser sensor and builds the map incremen-
tally using OctoMap [Hornung et al., 2013]. When more
information becomes available and the map is updated, the
POMDP model is also updated to reflect the robot’s im-
proved understanding of where the obstacles are. When the
POMDP model changes, TAPIR updates the solution on-
line. This cycle repeats until the worker no longer needs

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications_files/pomcp-1.0.tar.gz
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications_files/pomcp-1.0.tar.gz
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications_files/pomcp-1.0.tar.gz

the robot’s assistance.
The second segment of the submitted video shows how

a user can interactively modify the environment in V-REP,
leading to changes in the POMDP model at runtime. Fol-
lowing these changes to the model, TAPIR updates its pol-
icy online, in real time.

7 Summary
The past several years have seen tremendous advances in
the capability of POMDP solvers. These solvers have
moved the practicality of POMDP-based approaches far be-
yond robot navigation in a small 2D grid world, into mid-air
collision avoidance of commercial aircraft (TCAS) [Tem-
izer et al., 2010], grasping [Koval et al., 2014], and non-
prehensile manipulation [Horowitz and Burdick, 2013], to
name but a few examples. Despite these tremendous ad-
vances, two barriers to adoption have hindered the spread
of POMDPs to the wider robotics community. First, most
POMDP-based planners require the POMDP model to be
known a priori and to remain unchanged while a robot is
active. Second, there is a lack of user-friendly software for
POMDP-based motion planning.

This paper presents a software toolkit, called TAPIR,
that tackles both problems. TAPIR implements our re-
cent algorithm, Adaptive Belief Tree (ABT). ABT reuses
and improves existing techniques to quickly find a good
approximate solution, and also introduces a novel capa-
bility to adapt the solution online in response to changes
in the POMDP model. This feature enables us to re-
lax the requirement that POMDP model must be known
a priori and must remain the same while the robot ex-
ecutes its task. Furthermore, TAPIR provides an inter-
face to the commonly-used Robotics Operating System
(ROS) framework and V-REP simulator. To the best of
our knowledge, TAPIR is the first software toolkit that di-
rectly addresses the aforementioned two problems. TAPIR
can be downloaded from http://robotics.itee.
uq.edu.au/˜tapir. We hope this software will ease
roboticists in using POMDPs—a mathematically princi-
pled approach for planning under uncertainty—and hasten
the development of reliable and robust autonomous robots.

TAPIR also opens many avenues for future research and
applications. For instance, can we speed up POMDP solv-
ing further, and generate solutions of equivalent quality but
with an update rate above 100Hz? This level of perfor-
mance can be essential in many field robotics systems.

References
[Bai et al., 2010] H. Bai, D. Hsu, W.S. Lee, and A.V. Ngo. Monte

Carlo value iteration for continuous-state POMDPs. In WAFR,
2010.

[Bai et al., 2012] H. Bai, D. Hsu, M.J. Kochenderfer, and W.S.
Lee. Unmanned aircraft collision avoidance using continuous-
state POMDPs. In RSS, 2012.

[E. Rohmer, 2013] M. Freese E. Rohmer, S. P. N. Singh. V-REP:
a versatile and scalable robot simulation framework. In IROS,
2013.

[Hauser, 2010] K. Hauser. Randomized belief-space replanning
in partially-observable continuous spaces. In WAFR, 2010.

[He et al., 2010] R. He, E. Brunskill, and N. Roy. PUMA: plan-
ning under uncertainty with macro-actions. In AAAI, 2010.

[Hornung et al., 2013] Armin Hornung, Kai M. Wurm, Maren
Bennewitz, Cyrill Stachniss, and Wolfram Burgard. OctoMap:
An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013. Software available at
http://octomap.github.com.

[Horowitz and Burdick, 2013] M. Horowitz and J. Burdick.
Interactive non-prehensile manipulation for grasping via
POMDPs. In ICRA, 2013.

[Kaelbling et al., 1998] L. Kaelbling, M. Littman, and A. Cas-
sandra. Planning and acting in partially observable stochastic
domains. AI, 101:99–134, 1998.

[Kocsis and Szepesvri, 2006] L. Kocsis and C. Szepesvri. Bandit
based Monte-Carlo planning. In In: ECML-06. Number 4212
in LNCS, pages 282–293. Springer, 2006.

[Koval et al., 2014] Michael Koval, Nancy Pollard, and Sid-
dhartha Srinivasa. Pre- and post-contact policy decomposi-
tion for planar contact manipulation under uncertainty. In RSS,
Berkeley, USA, July 2014.

[Kurniawati and Patrikalakis, 2012] H. Kurniawati and N.M. Pa-
trikalakis. Point-based policy transformation: adapting policy
to changing POMDP models. In WAFR, 2012.

[Kurniawati and Yadav, 2013] H. Kurniawati and V. Yadav. An
online POMDP solver for uncertainty planning in dynamic en-
vironment. In ISRR, 2013.

[Kurniawati et al., 2008] H. Kurniawati, D. Hsu, and W.S. Lee.
SARSOP: Efficient point-based POMDP planning by approxi-
mating optimally reachable belief spaces. In RSS, 2008.

[Kurniawati et al., 2012] H. Kurniawati, T. Bandyopadhyay, and
N.M. Patrikalakis. Global motion planning under uncertain
motion, sensing, and environment map. Autonomous Robots:
Special issue on RSS 2011, 30(3), 2012.

[Papadimitriou and Tsitsiklis, 1987] C.H. Papadimitriou and J.N.
Tsitsiklis. The complexity of Markov decision processes.
Math. of Operation Research, 12(3):441–450, 1987.

[Pineau et al., 2003] J. Pineau, G. Gordon, and S. Thrun. Point-
based value iteration: an anytime algorithm for POMDPs. In
IJCAI, pages 1025–1032, 2003.

[Quigley et al., 2009] Morgan Quigley, Ken Conley, Brian
Gerkey, Josh Faust, Tully B. Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. ROS: an open-source robot op-
erating system. In ICRA Workshop on Open Source Software,
2009.

[Silver and Veness, 2010] D. Silver and J. Veness. Monte-Carlo
planning in large POMDPs. In NIPS, 2010.

[Smith and Simmons, 2004] T. Smith and R. Simmons. Heuristic
search value iteration for POMDPs. In UAI, 2004.

[Smith and Simmons, 2005] T. Smith and R. Simmons. Point-
based POMDP algorithms: improved analysis and implemen-
tation. In UAI, July 2005.

[Spaan and Vlassis, 2005] M.T.J. Spaan and N. Vlassis. Perseus:
randomized point-based value iteration for POMDPs. JAIR,
24:195–220, 2005.

[Temizer et al., 2010] Selim Temizer, Mykel J Kochenderfer,
Leslie P Kaelbling, Tomás Lozano-Pérez, and James K Kuchar.
Collision avoidance for unmanned aircraft using Markov de-
cision processes. In Proc. AIAA Guidance, Navigation, and
Control Conference, 2010.

[Thrun, 2000] S. Thrun. Monte Carlo POMDPs. In NIPS, pages
1064–1070, 2000.

http://robotics.itee.uq.edu.au/~tapir
http://robotics.itee.uq.edu.au/~tapir
http://octomap.github.com

	Introduction
	Related work
	POMDP Background
	Related POMDP Solvers

	The Algorithm: ABT
	The Software Toolkit: TAPIR
	Using TAPIR
	Defining a Problem
	Problem Templates
	Interface for ROS with V-REP Simulator

	Benchmarking TAPIR
	Setup
	Results
	Video Results

	Summary

