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Abstract
Solving continuous Partially Observable Markov Decision Processes (POMDPs) is challenging, particularly for high-
dimensional continuous action spaces. To alleviate this difficulty, we propose a new sampling-based online POMDP solver,
called Adaptive Discretization using Voronoi Trees (ADVT). It uses Monte Carlo Tree Search in combination with an
adaptive discretization of the action space as well as optimistic optimization to efficiently sample high-dimensional
continuous action spaces and compute the best action to perform. Specifically, we adaptively discretize the action space for
each sampled belief using a hierarchical partition called Voronoi tree, which is a Binary Space Partitioning that implicitly
maintains the partition of a cell as the Voronoi diagram of two points sampled from the cell. ADVT uses the estimated
diameters of the cells to form an upper-confidence bound on the action value function within the cell, guiding the Monte
Carlo Tree Search expansion and further discretization of the action space. This enables ADVT to better exploit local
information with respect to the action value function, allowing faster identification of the most promising regions in the
action space, compared to existing solvers. Voronoi trees keep the cost of partitioning and estimating the diameter of each
cell low, even in high-dimensional spaces where many sampled points are required to cover the space well. ADVT ad-
ditionally handles continuous observation spaces, by adopting an observation progressive widening strategy, along with a
weighted particle representation of beliefs. Experimental results indicate that ADVT scales substantially better to high-
dimensional continuous action spaces, compared to state-of-the-art methods.
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1. Introduction

Planning in scenarios with non-deterministic action effects
and partial observability is an essential, yet challenging
problem for autonomous robots. The Partially Observable
Markov Decision Process (POMDP) (Kaelbling et al. 1998;
Sondik 1971) is a general principled framework for such
planning problems. POMDPs lift the planning problem
from the state space to the belief space—that is, the set of all
probability distributions over the state space. By doing so,
POMDPs enable robots to systematically account for un-
certainty caused by stochastic actions and incomplete or
noisy observations in computing the optimal strategy. Al-
though computing the optimal strategy exactly is intractable
in general (Papadimitriou and Tsitsiklis 1987), the past two
decades have seen a surge of sampling-based POMDP
solvers (reviewed in Kurniawati (2022)) that trade opti-
mality with approximate optimality for computational
tractability, enabling POMDPs to become practical for a
variety of realistic robotics problems.

Despite these advances, POMDPs with continuous state,
action, and observation spaces remain a challenge,

particularly for high-dimensional continuous action spaces.
Recent solvers for continuous action POMDPs (Fischer and
Tas 2020; Mern et al. 2021; Seiler et al. 2015; Sunberg and
Kochenderfer 2018) are generally online—that is, planning
and execution are interleaved—and exploit Monte Carlo
Tree Search (MCTS) to find the best action among a finite
representative subset of the action space. MCTS interleaves
guided belief space sampling, value estimation, and action
subset refinement to incrementally improve the possibility
that the selected subset of actions contains the best action.
They generally use UCB1 (Auer et al. 2002) to guide belief
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space sampling and Monte Carlo backup for value esti-
mation, but differ in the action subset refinement.

Several approaches use the Progressive Widening
strategy (Couëtoux et al. 2011) to continuously add new
randomly sampled actions once current actions have been
sufficiently explored. Examples include POMCPOW
(Sunberg and Kochenderfer 2018) and IPFT (Fischer and
Tas 2020). More recent algorithms combine Progressive
Widening with more informed methods for adding new
actions: VOMCPOW (Lim et al. 2021) uses Voronoi Op-
timistic Optimization (Kim et al. 2020) and BOMCP (Mern
et al. 2021) uses Bayesian optimization. All of these solvers
use UCT-style simulations and Monte Carlo backups. An
early line of work, GPS-ABT (Seiler et al. 2015) takes a
different approach: It uses Generalized Pattern Search to
iteratively select an action subset that is more likely to
contain the best action and add it to the set of candidate
actions. GPS-ABT uses UCT-style simulations and Bellman
backup (following the implementation of ABT (Hoerger
et al. (2018); Klimenko et al. (2014)), though the distinction
between Monte Carlo and Bellman backup was not clarified
nor explored. All of these solvers have been successful in
finding good solutions to POMDPs with continuous action
spaces, though for a relatively low ð≤ 4Þ dimension.

To compute good strategies for POMDPs with high-
dimensional action spaces, we propose a new MCTS-based
online POMDP solver, called Adaptive Discretization using
Voronoi Trees (ADVT). ADVT is designed for problems
with continuous action spaces, while the state and obser-
vation spaces can either be discrete or continuous. ADVT
contains three key ideas, as briefly described below.

The first key idea of ADVT is a new data structure for
action space discretization, called Voronoi tree. AVoronoi
tree represents a hierarchical partition of the action space
for a single sampled belief. It follows the structure of a
Binary Space Partitioning (BSP) tree, but each parti-
tioning hyper-plane is only implicitly maintained and
computed based on the Voronoi diagram of a pair of
sampled actions, which results in a partitioning that is
much more adaptive to the spatial locations of the
sampled actions, compared to state-of-the-art methods
(Bubeck et al. 2011; Lim et al. 2021; Mansley et al. 2011;
Sunberg and Kochenderfer 2018; Valko et al. 2013). We
additionally maintain estimates of the diameters of the
cells in the Voronoi tree. These diameters are used in the
other two key ideas, namely, action selection and Voronoi
tree refinement, as described in the next two paragraphs.
The hierarchical structure of the Voronoi tree allows us to
estimate the diameters with an efficient sampling-based
algorithm that scales well to high-dimensional action
spaces. Section 5 provides a more detailed description on
the computational and representational advantages of the
Voronoi tree.

The second key idea of ADVT is the use of a cell-
diameter-aware upper-confidence bound on the values of
actions to guide action selection during planning. This
bound represents an upper-confidence bound on the

values of all actions within a cell, based on the estimated
value of the corresponding sampled action and the di-
ameter of the cell. Our bound is a generalization of a
bound that was developed for Lipschitz continuum-arm
bandit problems (Wang et al. 2020). It is motivated by the
observation that in many continuous action POMDPs for
robotics problems, the distance between two actions can
often be used as an indication of how similar their values
are. Using this observation, ADVT assumes that the
action value for a belief is Lipschitz continuous in the
action space, which in turn allows us to derive the upper
bound. The upper bound helps ADVT to exploit local
information (i.e., the estimated value of the representative
action of a cell and the cell diameter) with respect to the
action value function and bias its search toward the most
promising regions of the action space.

The third key idea is a diameter-aware cell refinement
rule. We use the estimated diameters of the cells to help
ADVT decide if a cell needs further refinement: a larger cell
will be split into smaller ones after a small number of
simulations, while a smaller will require more simulations
before it is split. This helps ADVT to avoid an unnecessarily
small partitioning of non-promising regions in the action
space.

To further support ADVT in efficiently finding ap-
proximately optimal actions, we use a stochastic version of
the Bellman backup (Klimenko et al. 2014) rather than the
typical Monte Carlo backup to estimate the values of
sampled actions. Stochastic Bellman backups help ADVT
to backpropagate the value of good actions deep in the
search tree, instead of averaging them out. This strategy of
estimating the action values is particularly helpful for
problems with sparse rewards.

Aside from continuous action spaces, continuous ob-
servation spaces pose an additional challenge for MCTS-
based online POMDP solvers. Recent approaches such as
POMCPOW and VOMCPOWapply Progressive Widening
in the observation space in conjunction with an explicit
representation of the sampled beliefs via a set of weighted
particles. Due to its simplicity, we adopt POMCPOW’s
strategy to handle continuous observation spaces. This
enables ADVT to scale to problems with continuous state,
action and observation spaces.

Experimental results on a variety of benchmark problems
with increasing dimension (up to 12-D) of the action space
and problems with continuous observation spaces indicate
that ADVT substantially outperforms state-of-the-art
methods (Lim et al. 2021; Sunberg and Kochenderfer
2018). Our C++ implementation of ADVT is available at
https://github.com/hoergems/ADVT.

This paper extends our previous work (Hoerger et al.
2022) in three ways: First is the extension of ADVT to
handle continuous observation spaces. Experimental
results on an additional POMDP benchmark problem
demonstrate the effectiveness of ADVT in handling
purely continuous POMDP problems. Second is a sub-
stantially expanded discussion on the technical concepts
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of ADVT. And third is an extended ablation study in
which we investigate the effectiveness of stochastic
Bellman backups when applied to two baseline solvers
POMCPOW and VOMCPOW.

2. Background and related work

A POMDP provides a general mathematical framework
for sequential decision making under uncertainty. For-
mally, it is an 8-tuple hS,A,O,T , Z,R, b0, γi. The robot is
initially in a hidden state s0 2S. This uncertainty is
represented by an initial belief b0 2B, which is a prob-
ability distribution on the state space S, where B is the set
of all possible beliefs. At each step t ≥ 0, the robot ex-
ecutes an action at 2A according to some policy π. It
transitions to a next state stþ1 2S according to the
transition model T(st, at, st+1) = p(st+1|st, at). For discrete
state spaces, T(st, at, st+1) represents a probability mass
function, whereas for continuous state spaces, it repre-
sents a probability density function.

The robot does not know the state st+1 exactly, but
perceives an observation ot 2O according to the observa-
tion model Z(st+1, at, ot) = p(ot|st+1, at). Z(st+1, at, ot) rep-
resents a probability mass function for discrete observation
spaces, or a probability density function for continuous
observation spaces, respectively. In addition, it receives an
immediate reward rt ¼ Rðst, atÞ 2R. The robot’s goal is to
find a policy π that maximizes the expected total discounted
reward or the policy value

Vπðb0Þ ¼ E

"X∞
t¼0

γtrt
��b0, π

#
, (1)

where the discount factor 0 < γ < 1 ensures that Vπ(b) is finite
and well-defined.

The robot’s decision space is the setΠ of policies defined
as mappings from beliefs to actions. The POMDP solution
is then the optimal policy, denoted as π∗ and defined as

π∗ ¼ argmax
π2Π

VπðbÞ: (2)

In designing solvers, it is often convenient to work with the
action value or Q-value

Qðb, aÞ ¼ Rðb, aÞ þ γEo2O
�
Vπ∗

�
boa
���b�, (3)

where Rðb, aÞ ¼
R
s2SbðsÞRðs, aÞds is the expected reward of

executing action a at belief b, while boa ¼ τðb, a, oÞ is the
updated robot’s belief estimate after it performs action a2A
while at belief b, and subsequently perceives observation
o2O. The optimal value function is then

V ∗ðbÞ ¼ max
a2A

Qðb, aÞ: (4)

A more elaborate explanation is available in Kaelbling
et al. (1998).

Belief trees are convenient data structures to find good
approximations to the optimal solutions via sampling-based
approaches, which have been shown to significantly im-
prove the scalability of POMDP solving (Kurniawati 2022).
Each node in a belief tree represents a sampled belief. It has
outgoing edges labeled by actions, and each action edge is
followed by outgoing edges labeled by observations which
lead to updated belief nodes. Naı̈vely, bottom-up dynamic
programming can be applied to a truncated belief tree to
obtain a near-optimal policy, but many scalable POMDP
solvers use more sophisticated sampling strategies to
construct a compact belief tree, from which a close-to-
optimal policy can be computed efficiently. ADVT uses
such a sampling-based approach and belief tree
representation too.

Various efficient sampling-based offline and online
POMDP solvers have been developed for increasingly
complex discrete and continuous POMDPs in the last two
decades. Offline solvers (e.g., Bai et al. 2014; Kurniawati
et al. 2011, 2008; Pineau et al. 2003; Smith and Simmons
2005) compute an approximately optimal policy for all
beliefs first before deploying it for execution. In contrast,
online solvers (e.g., Kurniawati and Yadav 2013; Silver
and Veness 2010; Ye et al. 2017) aim to further scale to
larger and more complex problems by interleaving
planning and execution, and by focusing on computing an
optimal action for only the current belief during planning.
For scalability purposes, ADVT follows the online
solving approach.

Some online solvers have been designed for contin-
uous POMDPs. In addition to the general solvers dis-
cussed in Section 1, some solvers (Agha-Mohammadi
et al. 2011; Sun et al. 2015; Van Den Berg et al. 2011,
2012) restrict beliefs to be Gaussian and use Linear–
Quadratic–Gaussian (LQG) control (Lindquist 1973) to
compute the best action. This strategy generally performs
well in high-dimensional action spaces. However, they
tend to perform poorly in problems with large uncer-
tainties (Hoerger et al. 2020).

Last but not least, hierarchical rectangular partitions
have been commonly used to discretize action spaces
when solving continuous action bandits and MDPs (the
fully observed version of POMDPs), such as HOO
(Bubeck et al. 2011) and HOOT (Mansley et al. 2011).
However, the partitions used in these algorithms are
typically predefined, which are less adaptive than
Voronoi-based partitions constructed dynamically during
the search. On the other hand, Voronoi partitions have
been proposed in VOOT (Kim et al. 2020) and VOM-
CPOW (Lim et al. 2021). However, their partitions are
based on the Voronoi diagram of all sampled actions,
which makes the computation of cell diameters and
sampling relatively complex in high-dimensional action
spaces. ADVT is computationally efficient, just like hi-
erarchical rectangular partitions, and yet adaptive, just
like the Voronoi partitions, getting the best of both
worlds.
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Algorithm 1. ADVT (Initial belief b0)

1: b = b0
2: T ¼ initializeBeliefTree(b)
3: HðbÞ ¼ Initialize Voronoi tree for belief b
4: isTerminal = False
5: while isTerminal is False do
6: while planning budget not exceeded do
7: (e, bc) = SAMPLEEPISODE(T , b) ⊳ Algorithm 2
8: for i ¼ jej � 1 to 1 do
9: (s, a, o, r) = ei
10: BACKUP(T , bc, a, r) ⊳ Algorithm 3
11: bc = Parent node of bc in T
12: REFINEVORONOITREE(HðbcÞ, a) ⊳ Algorithm 5
13: end for
14: end while
15: a∗ ¼ argmaxa2AðbÞbQðb, aÞ
16: (o, isTerminal) = Execute a∗
17: b0 = τ(b, a∗, o)
18: b = b0

19: end while

3. ADVT: Overview

In this paper, we consider a POMDP
P ¼ hS,A,O,T , Z,R, b0, γi, where the action space A is
continuous and embedded in a bounded metric space with
distance function d. Typically, we define the metric space to
be a D-dimensional bounded Euclidean space, though
ADVT can also be used with other types of bounded metric
spaces. We further consider the state space S and obser-
vation space O to be either discrete or continuous.

ADVT assumes that the Q-value function is Lipschitz
continuous in the action space; that is, for any belief b2B,
there exists a Lipschitz constant Lb such that for any actions
a, a

0 2A, we have jQðb, aÞ � Qðb, a0 Þj ≤ Lb dða, a0 Þ. Since
generally we do not know a tight Lipschitz constant, in the
implementation, ADVT uses the same Lipschitz constant L
for all beliefs in B, as discussed in Section 4.1.

ADVT is an anytime online solver for POMDPs. It in-
terleaves belief space sampling and action space sampling to
find the best action to perform from the current belief b2B.
The sampled beliefs are maintained in a belief tree, denoted
as T , while the sampled actions AðbÞ for a belief b are
maintained in a Voronoi tree, denoted as HðbÞ, which is
adaptively refined. The Voronoi trees form part of the belief
tree in ADVT: they determine the sampled action branches
for the belief nodes.

Algorithm 1 presents the overall algorithm of ADVT,
with details in the sections below. At each planning step,
ADVT follows the MCTS approach of constructing a belief
tree by sampling a set of episodes (line 7 in Algorithm 1),
starting from the current belief. Details on the belief tree
construction are provided in Section 4. After sampling an
episode, the estimated action values bQðb, aÞ along the se-
quence of actions selected by the episode are updated using

a backup operation (line 10 in Algorithm 1). In addition,
ADVT refines the Voronoi tree HðbÞ as needed for each
belief visited by the episode (line 12 in Algorithm 1), as
discussed in Section 5. Once a planning budget is exceeded,
ADVTselects an action a∗ from the current belief according
to

a∗ ¼ argmax
a2AðbÞ

bQðb, aÞ, (5)

executes a∗ in the environment to obtain an observation
o2O, updates the current belief to b0 = τ(b, a∗, o) (line 15-
17 in Algorithm 1), and proceeds planning from the updated
belief. This process repeats until the robot enters a terminal
state or a maximum number of planning steps has been
exceeded.

4. ADVT: Construction of the Belief Tree

The belief tree T is a tree whose nodes represent beliefs and
the edges are associated with action–observation pairs
(a, o), where a2A and o2O. A node b0 is a child of node b
via edge (a, o) if and only if b0 = τ(b, a, o).

Algorithm 2. SAMPLEEPISODE(Belief tree T , Belief node bc)

1: Notations:HðbÞ ¼ Voronoi tree associated with belief b; A(b) =
Set of candidate actions associated to the leaf nodes of HðbÞ

2: e = Empty sequence of state-action-observation-reward
quadruples; b = bc; s = A random state sampled from b;
newBelief = False

3: while newBelief is False and s not terminal do
4: a ¼ argmaxak2AðbÞUðb, akÞ ⊳ equation (6)
5: (b0, s0, o, r) = STEP(b, s, a) ⊳ Algorithm 4
6: Append (s, a, o, r) to e
7: N(b, a) = N(b, a) + 1; N(b) = N(b) + 1
8: if Aðb0 Þ ¼ ˘ then
9: a = Sample uniformly from A
10: Hðb0 Þ ¼ Initialize Voronoi tree for belief b0

11: Associate ða,AÞ with the root node of Hðb0 Þ
12: N(b0) = 0; N(b0, a) = 0
13: newBelief = True
14: end if
15: s = s0

16: b = b0

17: end while
18: r = 0
19: if newBelief is True then
20: h = calculateRolloutHeuristic(s, b)
21: Initialize bV ∗ðbÞ with h
22: end if
23: insert (s, � , � ,r) to e
24: return (e, b)

To construct the belief tree T , ADVT interleaves the
iterative select-expand-simulate-backup operations used in
many MCTS algorithms with adaptive discretization. We
assume that we have access to a generative model
G :S ×A→S ×O ×R that simulates the dynamics,
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observation, and reward models. In particular, for a given
state s2S and action a2A, we have that (s0, o, r) = G(s, a),
where (s0, o) is distributed according to p(s0, o|s, a) = T(s, a, s0)
Z(s0, a, o), and r = R(s, a). At each iteration, we first select a
path starting from the root by sampling an episode s0, a0, o0,
r0, s1, a1, o1, r1,… as follows: We first set the current node b
as the root node, and sample s0 from b. At each step i ≥ 0, we
choose an action ai 2AðbÞ at b using an action selection
strategy (discussed in Section 4.1), execute ai from state si via
the generative model G to obtain a next state s0, an obser-
vation o and the immediate reward ri. For problems with
discrete observation spaces, we set the episode’s next state
si+1 and observation oi to si+1 = s0 and oi = o, respectively. For
problems with continuous observation spaces, we select si+1
and oi according to an observation sampling strategy, as
discussed in Section 4.3. Finally, we update b to b’s child
node via (ai, oi). The process terminates when encountering a
terminal state or when the child node does not exist; in the
latter case, the tree is expanded by adding a new node, and
a rollout policy is simulated to provide an estimated value
for the new node. In either case, backup operations are
performed to update the estimated values for all actions
selected by the episode. In addition, new actions are added
to AðbÞ by refining the associated Voronoi tree HðbÞ as
needed for each encountered belief. Algorithm 2 presents
the pseudo-code for constructing T , while the backup
operation and refinement of HðbÞ are discussed in Section
4.2 and Section 5, respectively.

4.1. Action Selection Strategy

In contrast to many existing online solvers, which use
UCB1 to select the action to expand a node b of T , ADVT
treats the action selection problem as a continuum-arm bandit
problem. Specifically, it selects an action from the set of
candidate actions AðbÞ according to Wang et al. 2020

a* ¼ argmax
a2AðbÞ

Uðb, aÞ, with (6)

Uðb, aÞ ¼ bQðb, aÞ þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNðbÞ
Nðb, aÞ

s
þ L diamðPÞ , (7)

where N(b) is the number of times node b has been visited
so far, N(b, a) is the number of times a has been selected
atb, P4A is the unique leaf cell containing a in HðbÞ (see
Section 5 for details on the Voronoi tree), and diam(P) =
supa,a02Pd(a, a0) is the diameter of P with respect to the
distance metric d. The constant C is an exploration con-
stant, where larger values of C encourage exploration. In
case N(b, a) = 0, we set U(b, a) = ∞. With the Lipschitz
continuity assumption, the value U(b, a) can be seen as an
upper-confidence bound for the maximum possible
Q-value maxa02PQ(b, a0) within P, as follows: bQðb, aÞ þ
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNðbÞ=Nðb, aÞ

p
is the standard UCB1 bound for

the Q-value Q(b, a), and whenever this upper bounds
Q(b, a), we have U(b, a) ≥ Q(b, a0) for any a0 2 P, because

U(b, a) ≥ Q(b, a) + L diam(P) ≥ Q(b, a0), where the last
inequality holds due to the Lipschitz assumption. Since L is
unknown, we try different values of L in our experiments
and choose the best.

4.2. Backup

Algorithm 3. Backup(Belief tree T , Belief node b0, Action a,
Reward r)

1: b = Parent node of b0 in T

2: bQðb, aÞ←bQðb, aÞ þ rþγbV ∗

ðb0 Þ�bQðb, aÞ
Nðb, aÞ

3: bV ∗ðbÞ ¼ maxa2AðbÞbQðb, aÞ
After sampling an episode e, ADVT updates the esti-

mates bQðb, aÞ as well as the statistics N(b) and N(b, a) along
the sequence of beliefs visited by the episode. To updatebQðb, aÞ, we use a stochastic version of the Bellman backup
(Algorithm 3): Suppose r is the immediate reward sampled
by the episode after selecting a from b. We then updatebQðb, aÞ according to

bQðb, aÞ←bQðb, aÞ þ r þ γbV ∗
ðb0Þ � bQiðb, aÞ
Nðb, aÞ , (8)

where b0 is the child of b in the belief tree T via edge (a, o);
that is, the belief we arrived at after performing action a2A
and perceiving observation o2O from b, and bQiðb, aÞ is the
previous estimate of Q(b, a). This rule is in contrast to
POMCP, POMCPOWand VOMCPOW, where the Q-value
estimates are updated via Monte Carlo backup, that is

bQðb, aÞ←bQðb, aÞ þ r þ γbVeðb0Þ � bQiðb, aÞ
Nðb, aÞ , (9)

where bVeðb
0 Þ is the the total discounted reward of episode e,

starting from belief b0.
Our update rule in equation (8) is akin to the rule used in

Q-Learning (Watkins and Dayan 1992) and was im-
plemented in the ABT software (Hoerger et al. 2018;
Klimenko et al. 2014), though never explicitly compared
with Monte Carlo backup.

The update rule in equation (8) helps ADVT to focus its
search on promising parts of the belief tree, particularly for
problems where good rewards are sparse. For sparse-reward
problems, the values of good actions deep in the search tree
tend to get averaged out near the root when usingMonte Carlo
backups, thus their influence on the action values at the current
belief diminishes. In contrast, since stochastic Bellman
backups always backpropagates the current largest action
value for a visited belief, large action values deep in the search
tree have a larger influence on the action values near the root.
As we will demonstrate in the experiments, using stochastic
Bellman backups instead ofMonte Carlo backups can lead to a
significant performance benefit for many POMDP problems.
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4.3. Observation sampling strategy

Algorithm 4. STEP(Belief node b, State s, Action a)

1: (s0, o, r) = G(s, a) ⊳ Generative model
2: b0 = null
3: if O is discrete then
4: b0 = Child node of b via edge (a, o). (If no such child exists,
create one)

5: else
6: if jOðb, aÞj> koNðb, aÞαo then
7: o = Sample o uniformly at random from Oðb, aÞ
8: end if
9: b0 = Child node of b via edge (a, o). (If no such child exists,
create one)

10: w = Z(s0, a, o)
11: b0 [ {(s0, w)}
12: s0 ∼ b0

13: r = R(s, a, s0)
14: end if
15: return (b0, s0, o, r)

During the episode-sampling process, when ADVT se-
lects an action a at a belief b according to equation (6), we
must sample an observation to advance the search to the
next belief. ADVT uses different observation sampling
strategies, depending on whether the observation spaceO is
discrete or continuous. Algorithm 4 summarizes ADVT 0s
observation sampling strategy for both discrete and con-
tinuous observation spaces.

For discrete observation spaces, ADVT follows the
common strategy of sampling an observation from the
generative model G, given the current state of the episode
and the selected action, and representing each sampled
observation via an observation edge in the search tree. Since
the number of possible observations is finite in the discrete
setting, this strategy typically works well for moderately
sized observation spaces.

For continuous observation spaces, however, the above
strategy is unsuitable. In this setting, each sampled obser-
vation is generally unique, which leads to a possibly infinite
number of observations that need to be represented in the
search tree. As a consequence, we cannot expand the search
beyond the first step, resulting in policies that are too myopic.
Thus, to handle continuous observation spaces, we adopt a
strategy similar to the one used by POMCPOW (Sunberg and
Kochenderfer 2018) and VOMCPOW (Lim et al. 2021). This
strategy consists of two components, as described below.

The first component is to apply Progressive Widening
(Couëtoux et al. 2011) to limit the number of sampled ob-
servation edges per action edge as a function ofN(b, a), that is,
the number of timeswe have selected a from b. In particular, let
Oðb, aÞ be the set of observation children of action aat belief
b. We sample a new observation as a child a whenever
jOðb, aÞj satisfies jOðb, aÞj ≤ koNðb, aÞαo , where ko ≥ 0 and
αo ≥ 0 are user defined parameters that control the rate at which
new observations are added to the tree. If this condition is not

satisfied, we uniformly sample an observation from Oðb, aÞ.
This enables ADVT to visit sampled observation edges
multiple times and expand the search tree beyond one step.

The second component is to use an explicit represen-
tation of each sampled belief in the search tree via a set of
weighted particles fðsi,wiÞni¼1g, which allows us to obtain
state samples that are correctly distributed according to the
beliefs. When sampling an episode, suppose ADVT selects
action a from belief b, samples a next state s0 from the
generative model and selects an observation o using the
strategy above. The weight corresponding to s0 is then
computed according to w = Z(s0, a, o) and (s0, w) is added to
the particle set representing belief b0 whose parent is b via
the edge (a, o). To obtain a next state s0 that is distributed
according to b0, we resample s0 from b0 with a probability
proportional to the particle weights and continue from b0.

Note that in contrast to online POMDP solvers for
discrete observation spaces that only require a black-box
model to sample observations, we additionally require
access to the observation function Z(s, a, o). However, this
is a common assumption for solvers that are designed for
continuous observation spaces (Sunberg and Kochenderfer
2018; Hoerger and Kurniawati 2021).

Additionally, note that it is possible to apply the ob-
servation sampling strategy for continuous observation
spaces to discrete observation spaces as well. However, for
discrete observation spaces, this introduces unnecessary
computational overhead. As discussed above, the purpose
of explicit belief representations is to obtain state samples
that are correctly distributed according to the beliefs. For
discrete observation spaces, this is achieved by sampling a
next state s0 according to the transition model T(s, a, s0)
and an observation o according to the observation model
Z(s0, a, o), and then use s0 as a sample from the belief b0 =
τ(b, a, o). Since the sampled observations are always dis-
tributed according to Z(s0, a, o), the state s0 is distributed
according to b0. This is in contrast to continuous observation
spaces, where ADVTsamples observations from a distribution
that is potentially different to Z(s0, a, o) (line 7 in Algorithm 4).
Therefore, ADVThandles discrete and continuous observation
spaces separately and avoids the weighting a resampling step
in the discrete case, thus saving computation time.

5. ADVT: Construction and Refinement of
Voronoi Trees

Algorithm 5. REFINEVORONOITREE(Voronoi tree HðbÞ,
Action a)

1: (a, P) = leaf node of HðbÞ with its action component being a
2: if CrN(b, a) ≥ 1/diam(P)2 then
3: a0 = sample from P
4: (P1, P2) = Child cells of P induced by a and a0

5: Compute diameters of P1 and P2

6: Add (a, P1) and (a0, P0) as (a, P)’s children
7: end if
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For each belief node b in the belief tree, its Voronoi tree
HðbÞ is a BSP tree for A. Each node in HðbÞ consists of a
pair (a, P) with P4A and a 2 P the representative action of
P, and each non-leaf node is partitioned into two child
nodes. The partition of each cell in a Voronoi tree is a
Voronoi diagram for two actions sampled from the cell.

To construct HðbÞ, ADVT first samples an action a0
uniformly at random from the action space A, and sets the
pair ða0,AÞ as the root of HðbÞ. When ADVT decides to
expand a leaf node (a, P), it first samples an action a0

uniformly at random from P4A. ADVT then implicitly
constructs the Voronoi diagram between a and a0 within the
cell P, splitting it into two regions: One is P1, representing
the set of all actions a00 2 P for which the distance d(a00, a)
satisfies d(a00, a) ≤ d(a00, a0), and the other is P2 = P\P1. The
nodes (a, P1) and (a0, P2) are then inserted as children of (a,
P) inHðbÞ. The leaf nodes ofHðbÞ form the partition of the
action space A used by belief b, while the finite action
subset AðbÞ � A used to find the best action from b is the
set of actions associated with the leaves of HðbÞ. Figure 1
illustrates the relationship between a belief, the Voronoi tree
HðbÞ and the partition of A.

Voronoi trees have a number of representational and
computational advantages compared to existing partitioning
methods, such as hierarchical rectangular partitions
(Bubeck et al. 2011; Mansley et al. 2011) or Voronoi di-
agrams (Kim et al. 2020; Lim et al. 2021). In contrast to
hierarchical rectangular partitions, Voronoi trees are much
more adaptive to the spatial locations of sampled actions,
since the geometries of the cells are induced by the sampled
actions. Furthermore, in contrast to Voronoi diagrams, the
hierarchical structure of Voronoi trees allows us to derive
efficient algorithms for estimating the diameters of the cells
(discussed in Section 5.2) and sampling new actions from a
cell (detailed in Section 5.3). For Voronoi diagrams, the
diameter computation can be prohibitively expensive in the
context of online POMDP planning, since each sampled
action results in a re-partitioning of the action space; thus,
the diameters of the cells have to be re-computed from
scratch. Voronoi trees combine a hierarchical representation
of the partition with an implicit construction of the cells via
sampled actions, thereby achieving both adaptivity and
computational efficiency.

The next section describes how ADVT decides which
node of HðbÞ to expand.

5.1. Refining the Partition

ADVT decides how to refine the partitioning HðbÞ in two
steps. First, it selects a leaf node ofHðbÞ to be refined next.
This step relies on the action selection strategy used for
expanding the belief tree T (Section 4.1). The selected leaf
node (a, P) of HðbÞ is the unique leaf node with a chosen
according to equation (6)

In the second step, ADVT decides if the cell P should
indeed be refined. This decision is based on the quality of
the estimate bQðb, aÞ, as reflected by the number of samples

used to estimate bQðb, aÞ, and the variation of the Q-values
for the actions contained in P, as reflected by the diameter of
P. Specifically, ADVT refines the cell P only when the
following criteria is satisfied

CrNðb, aÞ ≥ 1

diamðPÞ2
, (10)

where Cr is an exploration constant. N(b, a), that is, the
number of times that a has been selected at b, provides a
rough estimate on the quality of the bQðb, aÞ estimate,
whereas diam(P) serves as a measure of variation of the
Q-value function within P due to the Lipschitz assumption.
This criterion, which is inspired by Touati et al. (2020),
limits the growth of the finite set of candidate actions AðbÞ
and ensures that a cell is only refined when its corre-
sponding action has been played sufficiently often. Larger
Cr cause cells to be refined earlier, thereby encouraging
exploration.

Our refinement strategy is highly adaptive, in the sense
that we use local information (i.e., the diameters of the cells,
induced by the representative actions and the quality of the
Q-value estimates of the representative actions), to influence
the choice of the cell to be partitioned and when the chosen
cell is partitioned, and the geometries of our cells are de-
pendent on the sampled actions. This strategy is in contrast
to other hierarchical decompositions, such as those used in
HOO and HOOT, where the cell that corresponds to an
action is refined immediately after the action is selected for
the first time, which generally means the Q-value of an
action is estimated based only on a single play of the action,
which is grossly insufficient for our problem. In addition,
our strategy is more adaptive than VOMCPOW. For
VOMCPOW, the decision on when to refine the partition is
solely based on the number of times a belief has been visited
and neither takes the quality of the Q-value estimates, nor
the diameters of the Voronoi cells into account. Further-
more, VOMCPOW’s refinement strategy is more global in a
sense that each sampled action results in a different Voronoi
diagram of the action space. On the other hand, ADVT 0s
strategy is much more local, since each refinement only
affects a single cell.

5.2. Estimating the Voronoi cell diameters

ADVT uses the diameters of the cells in the action selection
strategy and the cell refinement rule, but efficiently com-
puting the diameters of the cells is computationally chal-
lenging in high-dimensional spaces. We give an efficient
approximation algorithm for computing the Voronoi cell
diameters below.

Since the cells in HðbÞ are only implicitly defined, we
use a sampling-based approach to approximate a cell’s
diameter. Suppose we want to estimate the diameter of the
cell P corresponding to the node (a, P) of the Voronoi tree
HðbÞ. To do this, we first sample a set of k boundary points
APðbÞ of P, where k is a user defined parameter. In our
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experiments, we typically set k to be between 20 and 50. To
sample a boundary point aP 2APðbÞ, we first sample a point
α that lies on the sphere centered at a with diameter
diamðAÞ—which can be easily computed for our bench-
mark problems—uniformly at random. The point α lies
either on the boundary or outside of P. We then use the
Bisection method (Burden et al. 2016) with a and α as the
initial end-points, until the two end-points are less than a
small threshold ϵ away from each other, but one still lies
inside P and the other outside P. The point that lies inside P
is then chosen as a boundary point aP. The diameter of the
minimal bounding sphere that encloses all the sampled
boundary points in APðbÞ (Welzl 1991) is then an ap-
proximation of the diameter of P.

The above strategy to estimate the diameter of a cell
requires us to determine whether a sampled action a lies
inside or outside a cell P. Fortunately, a Voronoi tree allows
us to determine if a 2 P easily. Observe that for each cell P,
we have that P 4PARENT(P), where PARENT(P) is the
cell associated to the parent node of Pin the Voronoi tree. As
a result, a 2 P implies that a 2 PARENT(P). Therefore, to
check whether a 2 P, it is sufficient to check if a is contained
in all cells associated to the path in the Voronoi tree from the
root to P. Suppose ζ ¼ ðða0,P0Þ, ða1,P1Þ,…, ðaL,PLÞÞ is
the sequence of nodes corresponding to a path in HðbÞ and
we want to check whether a 2 PL. The point a is inside PL if,
for each (ai, Pi) 2 ζ , we have that dða, aiÞ ≤ dða, ai0 Þ, where
ai

0 is the inducing point of the cell corresponding to the
sibling node of (ai, Pi), and d(�, �) is the distance function on
the action space. If this condition is not satisfied, a is outside
PL, that is, a Ï PL.

To further increase the computational efficiency of our
diameter estimator, we re-use the sampled boundary points
APðbÞ when ADVT decides to split Pinto two child cells P0

and P00. Suppose the diameter of P was estimated using k
boundary points. Since every point in APðbÞ lies either on
the boundary of P0 or P00, we divide APðbÞ into AP0 ðbÞ and
AP00 ðbÞ, such that AP0 ðbÞ ¼ fa2APðbÞ j dða, a0 Þ ≤
dða, a00 Þg andAP00 ðbÞ ¼ APðbÞnAP0 ðbÞ, where a0 and a00 are
the inducing points of P0 and P00, respectively. This will
leave us with jAP0 ðbÞj ≤ k and jAP00 ðbÞj ≤ k boundary points
for cell P0 and P00, respectively. For bothAP0 ðbÞ andAP00 ðbÞ,

we then sample k � jAP0 ðbÞj and k � jAP00 ðbÞj additional
boundary points using the method above, such that
jAP0 ðbÞj ¼ k and jAP00 ðbÞj ¼ k. Using this method, we only
need to sample k new boundary points instead of 2k when
ADVT decides to split the cell P, leading to increased
computational efficiency.

5.3. Sampling from the Voronoi Cells

To sample an action that is approximately uniformly dis-
tributed in a cell P, we use a simple Hit & Run approach
(Smith 1984) that performs a random walk within
P. Suppose P is the cell corresponding to the node (a, P) of
the Voronoi tree HðbÞ. We first sample an action aP on the
boundary of P using the method described in Section 5.2.
Subsequently, we take a random step from a in the direction
towards aP, resulting in a new action a0 2 P. We then use a0

as the starting point, and iteratively perform this process for
m steps, which gives us a point that is approximately
uniformly distributed in P.

6. Experiments and Results

We evaluated ADVT on 5 robotics tasks, formulated as
continuous action POMDPs. The following section pro-
vides details regarding the tasks, while Table 1 summarizes
the state, action and observation spaces for each problem
scenario.

6.1. Problem Scenarios

6.1.1. Pushbox. Pushbox is a scalable motion planning
problem proposed in Seiler et al. (2015) which is motivated
by air hockey. A disk-shaped robot (blue disk in Figure 2(a))
has to push a disk-shape puck (red disk in Figure 2(a)) into a
goal region (green circle in Figure 2(a)) by bumping into it,
while avoiding any collision of itself and the puck with a
boundary region (black region if Figure 2(a)). The robot
receives a reward of 1000 when the puck is pushed into the
goal region, while it receives a penalty of �1, 000 if the
robot or the puck collides with the boundary region. Ad-
ditionally, the robot receives a penalty of �10 for every

Figure 1. Illustration of the relation between a belief tree T (left), the Voronoi treeHðbÞ associated to belief b (middle) and the partition
of the action space induced by the Voronoi tree (right).
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step. The robot can move freely in the environment by
choosing a displacement vector. Upon bumping into the
puck, the puck is pushed away and the motion of the puck is
affected by noise. We consider two variants of the problem,
Pushbox2D and Pushbox3D that differ in the dimen-
sionality of the state and action spaces. For the Pushbox2D
problem (illustrated in Figure 2(a)), the robot and the puck
operate on a 2D-plane, whereas for Pushbox3D, both the
robot and the puck operate inside a 3D environment. Let us
first describe the Pushbox2D variant. The state space
consists of the xy-locations of both the robot and the puck,
that is, S ¼ R

4, while the action space is defined by
A ¼ ½�1; 1�× ½�1; 1�. If the robot is not in contact with the
puck during a move, the state evolves deterministically
according to f ðs, aÞ ¼ ðxr þ ax, yr þ ay, xp, ypÞT , where (xr,
yr) and (xp, yp) are the xy-coordinates the robot and the puck,
respectively, corresponding to state s, and (ax, ay) is the
displacement vector corresponding to action a. In particular,
if the robot bumps into the puck, the next position ðxp0 , yp0 Þ of
the puck is computed as�

x0p
y0p

	
¼

�
xp
yp

	
þ 5rs

��
ax
ax

	
� n!

	�
n!þ

�
rx
ry

		
,

(11)

where the “ �” operator denotes the dot product, n! is the
unit directional vector from the center of the robot to the
center of the puck at the time of contact, and rs is a random
variable drawn from a truncated Gaussian distribution N(μ,
σ2, l, u), which is the Gaussian distribution N(μ, σ2) trun-
cated to the interval [l, u]. For our experiments, we used μ =
1.0, σ = 0.1, l = μ� σ = 0.9 and u = μ + σ = 1.1. The variables
rx and ry are random variables drawn from a truncated
Gaussian distribution N(0.0, 0.12, � 0.1, 0.1).

The initial position of the robot is known and is set to xr =
5.5 and yr = 9.5, respectively. The initial puck position,
however, is uncertain. Its initial xp and yp coordinates are
drawn from a truncated Gaussian distribution N(5.5, 2.02,
3.5, 7.5), but the robot has access to a noisy bearing sensor
to localize the puck and a noise-free collision sensor which
detects contacts between the robot and the puck. In par-
ticular, given a state s2S, an observation (oc, ob) consists of
a binary component oc which indicates whether or not a
contact between the robot and the puck occurred, and a
discretized bearing component ob calculated as

ob ¼ floor

�
atan2ðyo � yr, xo � xrÞ þ ro

π=6

	
, (12)

where xr, yr and xo, yo are the xy-coordinates of the robot and
the puck corresponding to the state s, and ro is a random
angle (expressed in radians) drawn from a truncated
Gaussian distribution N(0.0, (π/18)2, � π/18, π/18). Due to
the floor operator in equation (12), the number of discretized
bearing observation is 12, thus the observation space
consists of 24 unique observations.

Pushbox3D is a straightforward extension of the
Pushbox2D problem: The state space is defined as S ¼ R

6,
consisting of the xyz-locations of the robot and the puck.
The action space is A ¼ ½�1; 1�× ½�1; 1�× ½�1; 1�, where
each a2A describes a 3D-displacement vector of the robot.
The transition dynamics are defined similarly to Push-
box2D, except that all quantities are computed in 3D. The
observation space is extended with an additional bearing
observation, computed according to equation (12), but with
the term atan2(yo� yr, xo� xr) being replaced by atan2(zo�
zr, yo� yr), where zr and zo are the z-coordinates of the robot
and the puck, respectively. The reward function is the same
as in the Pushbox2D problem.

For both variants of the problem the discount factor is γ =
0.95 and a run is considered successful if the robot manages
to push the puck into a goal region within 50 steps, while
avoiding collisions of itself and the puck with the boundary
region.

6.1.2. Parking. An autonomous vehicle with deterministic
dynamics operates in a 3D environment populated by ob-
stacles, shown in Figure 2(b). The goal of the vehicle is to
safely navigate to a goal area located between the obstacles
while avoiding any collision with the obstacles (black re-
gions in Figure 2(b)). The vehicle receives a reward of
100 when reaching the goal area, while a collisions with the
obstaces are penalized by �100. Additionally, the vehicle
receives a penalty of �1 for every step. We consider two
variants of the problem, Parking2D and Parking3D. For
Parking2D, the vehicle navigates on a 2D-plane, whereas
for Parking3D, the vehicle operates in 3D space. We first
describe the Parking2D variant: The state space is S ¼ R

4

and consists of the xy-position of the vehicle on the plane, its
orientation θ and its velocity v. The vehicle is controlled via
a steering wheel angle aθ and acceleration av, that is, the

Table 1. Summary of the State, Action, and Observation Spaces for Each Problem Scenario.

S A O

Pushbox2D R
4 [�1,1]2 24 observations

Pushbox3D R
6 [�1,1]3 288 observations

Parking2D R
4 [�π/2, π/2] × [�8, 8] 4 observations

Parking3D R
5 [�π/2, π/2] × [�8, 8] × [�7/2, 7/2] 4 observations

SensorPlacement-D R
D

R
D 4 observations

VDP-Tag R
4 [0, 2π) ×{0, 1} R

8

LunarLander R
6

R
þ ×R R

3
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action space is A ¼ V ×Φ, where V = [�π/2, π/2] is the
continuous set of steering wheel angles and Φ = [�8, 8] is
the continuous set of accelerations. We assume that for a
given state s2S and action a2A, the state of the vehicle
evolves acoording to the following deterministic second-
order discrete-time dynamics model

f ðx, y, θ, v, aθ, avÞ ¼

2664
xþ vcosðθÞΔ
yþ vsinðθÞΔ
θ þ aθΔ
vþ avΔ

3775, (13)

where x, y, θ and v are the 2D-position, orientation, and
velocity corresponding to state s, Δ = 1/3s is a fixed control
duration, and aθ, av are the steering wheel angle and ac-
celeration components of the action. To compute the next
state s0, given s and a, we numerically integrate equation
(13) for 3 steps.

There are three distinct areas in the environment, each
consisting of a different type of terrain (colored areas in
Figure 2(b)). Upon traversal, the vehicle receives an obser-
vation regarding the terrain type, which is only correct 70% of
the time due to sensor noise. If the vehicle is outside the
terrains, we assume that it deterministically receives a NULL
observation. Initially the vehicle starts near one of three
possible starting locations (red areas in Figure 2(b)) with equal
probability. The exact initial position of the vehicle along the
horizontal y-axis is then drawn uniformly from U[�0.175,
0.175] around the starting location. For Parking3D, the vehicle
operates in the full 3D space, and we have additional con-
tinuous state and action components that model the vehicles
elevation and change in elevation, respectively. We assume
that the elevation of the vehicle changes according to z + Δah,
where z2R is the elevation component of the state, and ah 2
[�7/2, 7/2] is the elevation-change component of the action.
The discount factor for both variants is γ = 0.95 and a run is
considered successful if the vehicle enters the goal area within
50 steps while avoiding collisions with the obstacles.

Two properties make this problem challenging. First is
the multi-modal beliefs which require the vehicle to traverse
the different terrains for a sufficient amount of time to
localize itself before attempting to reach the goal. Second,
due to the narrow passage that leads to the goal, small
perturbations from the optimal action can quickly result in
collisions with the obstacle. As a consequence, good re-
wards are sparse and a POMDP solver must discover them
quickly in order to compute a near-optimal strategy.

6.1.3. SensorPlacement. We propose a scalable motion
planning under uncertainty problem in which a D-DOF
manipulator with D revolute joints operates in muddy water
inside a 3D environment. The robot is located in front of a
marine structure, represented as four distinct walls, and its
task is to mount a sensor at a particular goal area between the
walls (rewarded with 1000) while having imperfect infor-
mation regarding its exact joint configuration. To localize
itself, the robot’s end-effector is equipped with a touch
sensor. Upon touching a wall, it provides noise-free in-
formation regarding which wall is being touched, while we
assume that the sensor deterministically outputs a NULL
observation in a contact-free state. However, in order to
avoid damage, the robot must avoid collisions (penalized
by �500) between any of its other links and the walls. The
state space of the robot consists of the set of joint angles for
each joint. The action space is A � R

D, where a2A is a
vector of joint velocities. Due to underwater currents, the
robot is subject to random control errors and the joint angles
corresponding to a state evolve according to

θ0 ¼ θ þ aþ r, (14)

where θ is the set of joint angles corresponding to the
current state, and r is a random vector sampled from a
multivariate Gaussian distribution N(0, σ2I), where I is the
identity matrix of sizeD, and σ2 = 10�3. Initially the robot is
uncertain regarding its exact joint angle configuration. We
assume that the initial joint angles are distributed uniformly
according to U[θl, θu], where θl = θ0 � h and θu = θ0 + h,
with θ0 corresponding to the configuration where all joint
angles are zero, except for the second and third joint whose
joint angles are �1.57 and 1.57, respectively, and
h ¼ ð0:1,…, 0:1Þ 2R

D (units are in radians). We consider
four variants of the problem, denoted as SensorPlacement-
D, with D 2 {6, 8, 10, 12}, that differ in the degrees-of-
freedom (number of revolute joints and thus the dimen-
sionality of the action space) of the manipulator. Figure 2(c)
illustrates the SensorPlacement-8 problem, where the col-
ored areas represent the walls and the green sphere repre-
sents the goal area. The discount factor is γ = 0.95 and a run
is considered successful if the manipulator mounts the
sensor within 50 steps while avoiding collisions with the
walls. To successfully mount the sensor at the target lo-
cation, the robot must use its touch sensor to carefully
reduce uncertainty regarding its configuration. This is
challenging, since a slight variation in the performed actions
can quickly lead to collisions with the walls.

Figure 2. Illustrations of (a) the Pushbox2D, (b) the Parking2D, (c) the SensorPlacement-8, (d) the VDP-Tag, and (e) the LunarLander
problems. Goal regions in are marked as green circles or a green flag.
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6.1.4. Van Der Pol Tag. Van Der Pol Tag (VDP-Tag) is a
benchmark problem introduced in Sunberg and
Kochenderfer (2018) in which an agent (blue particle in
Figure 2(d)) operates in a 2D-environment. The goal is to
tag a moving target (red particle in Figure 2(d)) whose
motion is described by the Van Der Pol differential
equation and disturbed by Gaussian noise with standard
deviation σ = 0.05. Initially, the position of the target is
unknown. The agent travels at a constant speed but can
pick its direction of travel at each step and whether to
activate a costly range sensor, that is, the action space is
A ¼ ½0; 2πÞ× f0; 1g, where the first component is the
direction of travel and the second component is the
activation/deactivation of the range sensor. The robot
receives observations from its range sensor via 8 beams
(i.e., O ¼ R

8) that measure the agent’s distance to the
target if the target is within the beam’s range. These
measurements are more accurate when the range sensor is
active. While the target moves freely in the environment,
the agent’s movements are restricted by four obstacles in
the environment, shown in Figure 2(d). Catching the target
is reward by 100, while activating the range sensor is
penalized by �5. Additionally, each step incurs a penalty
of �1. The discount factor is γ = 0.95 and a run is con-
sidered successful of the agent catches the target within
50 steps. More details of the VDP-Tag problem can be
found in Sunberg and Kochenderfer (2018).

Note that in this problem, the action space consists of two
disconnected components, namely, [0, 2π) ×{0} and [0,
2π) ×{1}. To allow a Voronoi tree HðbÞ in ADVT to cover
the entire action space, we ensure that once the root node of
HðbÞ is split, we set the range sensor component of the
representative actions of the two resulting child cells to
0 and 1, respectively, such that one child cell covers the
component [0, 2π) ×{0}, and the other child cell covers the
component [0, 2π) ×{1}.

6.1.5. LunarLander. This problem is a partially observable
adaptation of Atari’s Lunar Lander game. Here, the state,
action and observation spaces are all continuous. The ob-
jective is to control a lander vehicle to safely land at a target
zone located on the moon’s surface. The lander operates on
a xy-plane and its state is a 6D-vector ðx, y, θ, _x, _y, _θÞ, where
x2R and y2R are the horizontal and vertical positions of

the lander and θ2R its orientation. _x2R, _y2R and _θ2R

represent the lander’s horizontal, vertical, and angular ve-
locities, respectively. The action space isA ¼ Λ ×Ψ, where
Λ ¼ R

þ is the set of linear accelerations along the lander’s
vertical axis, and Ψ ¼ R is the set of angular accelerations
about the lander’s geometric center. The initial belief of the
lander is a multivariate Gaussian distribution with mean μ =
(0,10,0,0,�10,0)T and covariance matrix Σ = diag(1.52,
1.02, 0.12, 02, 0.52, 0.12).

We assume that the state of the lander evolves according
to the following second-order discrete-time stochastic
model

f ðx, y, θ, _x, _y, _θ,~λ, ~ψÞ ¼

26666664
xþ _xΔ
yþ _yΔ
θ þ _θΔ

_xþ ð� ~λsinðθÞMÞΔ
_yþ ð~λcosðθÞM � GÞΔ

_θ þ H ~ψΔ

37777775, (15)

where ~λ ¼ λþ eλ and ~ψ ¼ ψ þ eψ , with λ and ψ being the
vertical and angular accelerations corresponding to the
action, and eλ and eψ are random control errors drawn from
zero-mean Gaussian distributions with standard deviations
σλ = 1 × 10�4 and σψ = 5 × 10�2, respectively. The variable
Δ = 0.2s is a constant step size, whereas F = 40 andH = 2 are
motor constants. The variable G = �9.81m/s2 is a constant
describing the gravitational acceleration along the y-axis. To
obtain the next state, given the current state and an action, we
numerically integrate the system in equation (15) for 5 steps.

The lander perceives information regarding its state via
three noisy sensors: The first two sensors measure the
lander’s horizontal and angular velocities, whereas the third
sensor measures the distance to the ground along the lander’s
vertical axis (dashed line in Figure 2(e)). The readings of all
three sensors are disturbed by standard-Gaussian noise.

The reward function is defined by

rt ¼

8<:
�1000, if θ ≥ 0:5 or yt < 0

100� jxtj � jθtj � _y2t , if yt ≤ 0:3

�1, otherwise:

(16)

The first term in equation (16) encourages the lander to
prevent dangerous angles and crashing into the ground. The
second term encourages the lander to safely land at x = 0 with
an upright angle and a small vertical velocity. The third term
encourages the lander to land as quickly as possible. The
discount factor is γ = 0.95 and a run is considered successful if
the lander’s vertical position reaches y ≤ 0.3 within 50 steps,
without crashing into the ground (y < 0).

6.2. Experimental setup

The purpose of our experiments is three-fold: First is to
evaluate ADVT and compare it with two state-of-the-art
online POMDP solvers for continuous actions spaces,
POMCPOW (Sunberg and Kochenderfer 2018) and
VOMCPOW (Lim et al. 2021). The results of those ex-
periments are discussed in Section 6.3.1.

Second is to investigate the importance of the different
components of ADVT, specifically the Voronoi tree–based
partitioning, the cell-diameter-aware exploration term in
equation (7), and the stochastic Bellman backups. For this
purpose, we implemented the original ADVT and three
modifications. First isADVT-R, which replaces the Voronoi
decomposition of ADVT with a simple rectangular-based
method: Each cell in the partition is a hyper-rectangle that is
subdivided by cutting it in the middle along the longest side
(with ties broken arbitrarily). The second variant is ADVT
(L=0), which is ADVT where equation (7) reduces to the
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standard UCB1 bound. For the third variant, ADVT-MC,
we replace the stochastic Bellman backup in equation (8)
with the Monte Carlo backup in equation (9), as used by
POMCPOWand VOMCPOW. The results for this study are
discussed in Section 6.3.2

Third is to test the effects of two algorithmic components
of ADVT when applied to the baselines VOMCPOW and
POMCPOW: In the original implementation of VOM-
CPOWand POMCPOW provided by the authors, the policy
is recomputed after every planning step using a new search
tree. In contrast, for discrete observation spaces, ADVTapplies
ABT’s (Kurniawati and Yadav 2013) strategy that re-uses the
partial search tree (starting from the updated belief) constructed
in the previous planning steps and improves the policy within
the partial search tree. Therefore, for problems with discrete
observation spaces, we also tested modified versions of
VOMCPOW and POMCPOW, where we follow ADVT 0s
strategy of re-using the partial search trees. Note that for the
VDP-Tag and LunarLander problems, we did not test the
variants of VOMCPOW and POMCPOW that re-use partial
search trees, since each observation that the agent perceives
from the environment leads to a new search tree due to the
continuous observation spaces. Moreover, to test the effects of
ADVT 0s stochastic Bellman backup strategy further, we
implemented variants of VOMCPOWand POMCPOW to use
stochastic Bellman backups instead of Monte Carlo backups.
The results are discussed in Section 6.3.3.

To approximately determine the best parameters for each
solver and problem, we ran a set of systematic preliminary
trials by performing a grid-search over the parameter space.
For each solver and problem, we used the best parameters
and ran 1000 simulation runs, with a fixed planning time of
1s CPU time for each solver and scenario. Each tested solver
and the scenarios were implemented in C++ using the
OPPT-framework (Hoerger et al. 2018). All simulations
were run single-threaded on an Intel Xeon Platinum
8274 CPU with 3.2GHz and 4GB of memory.

6.3. Results

6.3.1. Comparison with State-of-the-Art Methods. Table 2
shows the average total discounted rewards of all tested solvers
on the Pushbox, Parking, VDP-Tag and LunarLander prob-
lems, while Figure 3 shows the results for the SensorPlacement
problems. Detailed results for the SensorPlacement problems
are presented in Table 3while results on the success rates of the
tested solvers are shown in Table 4 and Table 5.

ADVT generally outperforms all other methods, except
for VDP-Tag, where VOMCPOW performs better. Inter-
estingly, as we will see in Section 6.3.2, the variant of ADVT
that uses Monte Carlo backups instead of stochastic Bellman
backups (ADVT-MC) outperforms all other methods in this
problem, which supports ADVT 0s effectiveness in handling
continuous actions. The results for the SensorPlacement
problems indicate that ADVT scales well to higher-
dimensional action spaces. Additionally, the results on the
VDP-Tag and LunarLander problems indicate that ADVT is
capable of handling continuous observation spaces well.

ADVT performs well in terms of the success rate, too
(Table 4 and Table 5). ADVT maintains more than 90%
success rate in the Pushbox, Parking, VDP-Tag and Lu-
narLander problems. In the Parking3D problem, VOM-
CPOW’s and POMCPOW’s success rate can be as low as
∼ 30% and 12.5%. Similarly, in the SensorPlacement
problems ADVT achieves a higher success rate compared
to VOMCPOW and POMCPOW. While in the
SensorPlacement-6 problem, the gap between ADVT and
VOMCPOW is relatively small (∼ 98% for ADVT and
∼ 92% for VOMCPOW), the gap increases as the dimen-
sionality of the action space increases. In the
SensorPlacement-12 problem, ADVT achieves a success
rate of > 72%, while VOMCPOW’s success rate drops to
< 60%. POMCPOWachieves a success rate of < 74% in the
SensorPlacement-6 problem, while only achieving a suc-
cess rate of < 32% in the SensorPlacement-12 problem.

6.3.2. Understanding the Effects of Different Components of
ADVT. In this section we present results demonstrating the
importance of three key algorithmic components of ADVT,
namely the Voronoi-based partitions, the cell-size-aware
optimistic upper-confidence bound and the Stochastic
Bellman backups.

Effects of Voronoi-based partitioning for ADVT. To
understand the benefit of our Voronoi-based partitioning
method, we compare the results of ADVT with those of
ADVT-R. Table 6 shows that ADVT-R slightly outperforms
ADVT in the Pushbox2D, Parking2D, VDP-Tag and Lu-
narLander problems, indicating that a rectangular-based
partitioning works well for low-dimensional action spaces.
However, Table 3 shows that ADVT-R is uncompetitive in the
SensorPlacement problems as the dimensionality of the action
space increases. For rectangular-based partitionings, the diam-
eters of the cells can shrink very slowly in higher-dimensional
action spaces. Additionally, the cell refinement method is

Table 2. Average Total Discounted Rewards and 95% Confidence Intervals of ADVT, VOMCPOW, and POMCPOWon the Pushbox,
Parking, VDP-Tag, and LunarLander Problems. The Average is Taken Over 1000 Simulation Runs per Solver and Problem, With a
Planning Time of 1s per Step.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander

ADVT 351.6 ± 10.0 322.1 ± 14.9 35.2 ± 1.9 32.6 ± 3.5 30.5 ± 1.0 26.01 ± 1.2
VOMCPOW 129.8 ± 13.3 73.5 ± 13.8 �0.78 ± 2.8 �18.4 ± 1.4 32.9 ± 0.9 13.3 ± 2.2
POMCPOW 82.1 ± 14.2 3.6 ± 12.9 �5.1 ± 3.0 �25.7 ± 1.4 28.2 ± 1.1 13.5 ± 2.1
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independent of the spatial locations of the sampled actions.
Both properties result in loose optimistic upper-confidence
bounds of the Q-values, leading to excessive exploration of
suboptimal areas of the action space. For Voronoi trees, the
geometries (and therefore the diameters) of the cells are much

more adaptive to the spatial locations of the sampled actions,
leading to more accurate optimistic upper-confidence bounds
of the associated Q-values which avoids over-exploration of
areas in the action space that already contain sufficiently
many sampled actions.

Table 3. Average Total Discounted Rewards and 95% Confidence Intervals of all Tested Solvers on the SensorPlacement Problems. The
average is Taken Over 1000 Simulation Runs per Solver and Problem, With a Planning Time of 1s per Step.

SensorPlacement-6 SensorPlacement-8 SensorPlacement-10 SensorPlacement-12

ADVT 842.8 ± 9.5 706.8 ± 17.5 565.1 ± 21.7 303.0 ± 19.8
ADVT-R 676.3 ± 19.7 238.1 ± 33.5 28.7 ± 18.4 �17.3 ± 7.4
ADVT (L = 0) 780.4 ± 12.6 448.8 ± 15.9 325.3 ± 16.2 102.5 ± 7.4
ADVT-MC 812.6 ± 11.4 692.7 ± 17.7 551.2 ± 18.3 293.5 ± 19.6

VOMCPOW 768.5 ± 16.4 305.6 ± 25.8 110.1 ± 24.5 �8.2 ± 13.2
VOMCPOW+our RT+our BB 823.4 ± 15.1 679.1 ± 17.9 481.6 ± 22.2 191.3 ± 17.6
VOMCPOW+our BB 779.2 ± 16.1 654.9 ± 16.3 453.6 ± 22.8 182.4 ± 17.7
VOMCPOW+our RT 817.2 ± 15.8 663.4 ± 18.6 476.0 ± 22.7 189.9 ± 18.0

POMCPOW 377.6 ± 23.5 113.4 ± 24.2 �36.8 ± 11.3 �74.3 ± 12.9
POMCPOW+our RT+our BB 659.3 ± 17.2 428.7 ± 21.5 114.6 ± 16.6 �1.9 ± 6.6
POMCPOW+our BB 562.5 ± 18.3 408.7 ± 19.1 102.6 ± 14.4 �6.5 ± 7.1
POMCPOW+our RT 653.2 ± 17.3 425.2 ± 21.8 111.3 ± 16.8 �2.1 ± 6.8

Figure 3. Average total discounted rewards of all tested solvers on the SensorPlacement problems. The average is taken over
1000 simulation runs per solver and problem.

Table 4. Success Rates of all Tested Solvers on the Pushbox, Parking, VDP-Tag and LunarLander Problems. The Success Rate Is with
Respect to 1000 Simulation per Solver and Problem, With a Planning Time of 1s per Step.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander

ADVT 0.985 0.969 0.912 0.916 0.985 0.969
ADVT-R 0.987 0.968 0.943 0.906 0.984 0.970
ADVT (L=0) 0.966 0.965 0.857 0.898 0.980 0.931
ADVT-MC 0.989 0.972 0.417 0.337 0.991 0.957

VOMCPOW 0.754 0.815 0.512 0.297 0.987 0.859
VOMCPOW+our RT+our BB 0.985 0.970 0.885 0.886 —

VOMCPOW+our BB 0.976 0.893 0.882 0.885 0.986 0.958
VOMCPOW+our RT 0.975 0.939 0.597 0.314 —

POMCPOW 0.712 0.692 0.401 0.125 0.979 0.876
POMCPOW+our RT+our BB 0.974 0.953 0.853 0.534 —

POMCPOW+our BB 0.970 0.891 0.793 0.246 0.976 0.943
POMCPOW+our RT 0.963 0.969 0.409 0.122 —
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Effects of cell-size-aware optimistic upper-confidence
bound. To investigate the importance of the component L
diam(P) in the optimistic upper-confidence bound in equation
(7), we compare ADVT and ADVT (L=0). The results in
Table 6 and Table 3 indicate that the cell-diameter-aware
component in the upper-confidence bound in equation (7) is
important for ADVT to perform well, particularly in the
SensorPlacement problems. The reason is that in the early
stages of planning, the partitions associated to the beliefs are
still coarse, i.e., only a few candidate actions are considered per
belief. If some of those candidate actions have small estimated
Q-values, ADVT (L=0) may discard large portions of the
action space for a very long time, even if they potentially
contain useful actions. The cell-diameter-aware bias term in
equation (7) alleviates this issue by encouraging ADVT to
explore cells with large diameters. This is particularly im-
portant for problems with large action spaces such as the
SensorPlacement problems.

Effects of Stochastic Bellman backups. To investigate
the effects of this component, let us compare ADVTwith
ADVT-MC. Table 6 and Table 3 reveal that ADVT which
uses stochastic Bellman backups often performs significantly

better, particularly in the Parking2D and Parking3D prob-
lems. The reason is that in both problems good rewards are
sparse, particularly for beliefs where the vehicle is located
between the walls and slight deviations from the optimal
actions can lead to collisions. The stochastic Bellman
backups help to focus the search on more promising regions
of the action space. On the other hand, in the VDP-Tag
problem, ADVT-MC performs better than ADVT. In this
problem, it is important to reduce the uncertainty with respect
to the target location during the first few steps by activating
the range sensor. However, due to the cost of activating the
range sensor, this strategy often seems suboptimal during the
early stages of planning, when only a few episodes have been
sampled. At the same time, in this problem, the stochastic
Bellman backups in ADVT tend to overestimate theQ-values
for actions that do not activate the range sensor (this effect is
known asmaximization bias inQ-learning (Sutton and Barto
2018)). As a result, ADVT tends to discard strategies that
reduce the uncertainty with respect to the target location
during the first few steps. ADVT-MC which uses Monte
Carlo backups does not suffer frommaximization bias, which
helps it to perform better than ADVT in this problem.

Table 5. Success Rates of all Tested Solvers on the SensorPlacement Problems. The Success Rate is with Respect to 1000 Simulation per
Solver and Problem, With a Planning Time of 1s per Step.

SensorPlacement-6 SensorPlacement-8 SensorPlacement-10 SensorPlacement-12

ADVT 0.981 0.962 0.834 0.724
ADVT-R 0.832 0.692 0.756 0.557
ADVT (L = 0) 0.937 0.726 0.791 0.601
ADVT-MC 0.964 0.959 0.828 0.719

VOMCPOW 0.923 0.721 0.645 0.583
VOMCPOW+our RT+our BB 0.979 0.951 0.807 0.703
VOMCPOW+our BB 0.924 0.883 0.798 0.702
VOMCPOW+our RT 0.967 0.891 0.803 0.698

POMCPOW 0.738 0.636 0.519 0.321
POMCPOW+our RT+our BB 0.829 0.794 0.646 0.575
POMCPOW+our BB 0.794 0.779 0.641 0.563
POMCPOW+our RT 0.826 0.781 0.657 0.578

Table 6. Average Total Discounted Rewards and 95% Confidence Intervals of all Tested Solvers on the Pushbox, Parking, VDP-Tag and
LunarLander Problems. The average is Taken Over 1000 Simulation Runs per Solver and Problem, With a Planning Time of 1s per Step.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander

ADVT-R 371.4 ± 9.8 321.2 ± 15.1 38.9 ± 1.8 24.3 ± 3.4 30.2 ± 1.0 29.6 ± 1.1
ADVT (L=0) 340.8 ± 14.7 294.6 ± 13.3 29.2 ± 3.5 18.6 ± 1.7 28.7 ± 1.1 24.7 ± 1.2
ADVT-MC 319.6 ± 13.7 311.0 ± 16.2 �3.2 ± 1.8 �14.7 ± 0.5 33.5 ± 0.8 21.9 ± 1.7

VOMCPOW+our RT+our BB 322.9 ± 12.1 274.9 ± 14.2 28.2 ± 1.8 24.4 ± 2.4 - -
VOMCPOW+our BB 316.3 ± 13.6 134.2 ± 17.4 27.5 ± 1.9 23.7 ± 2.5 29.9 ± 1.0 19.9 ± 1.6
VOMCPOW+our RT 316.0 ± 12.3 268.9 ± 14.2 �0.42 ± 2.8 �15.7 ± 1.5 - -

POMCPOW+our RT+our BB 314.2 ± 13.0 245.7 ± 14.1 27.7 ± 1.8 8.8 ± 2.6 - -
POMCPOW+our BB 300.6 ± 12.6 128.8 ± 17.5 24.2 ± 1.9 �10.4 ± 2.1 27.5 ± 1.2 18.4 ± 2.2
POMCPOW+our RT 270.6 ± 18.9 203.7 ± 14.3 �5.2 ± 2.9 �22.8 ± 1.3 - -
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6.3.3. Ablation study. Here we investigate how two
components of ADVT, namely, re-using partial search
trees and using stochastic Bellman backups instead of
Monte Carlo backups, affect the baselines VOMCPOW
and POMCPOW when we apply these ideas to the base-
lines. The variants of VOMCPOW and POMCPOW that
re-use partial search trees are denoted by VOMCPOW+RT
and POMCPOW+RT, respectively. The variants of the
baselines that use stochastic Bellman backups are denoted
by VOMCPOW+BB and POMCPOW+BB. The variants
VOMCPOW+RT+BB and POMCPOW+RT+BB both re-
use partial search trees and perform stochastic Bellman
backups.

Generally, the results in Table 6 and Table 3 indicate that
the baselines that re-use partial search trees perform much
better than the baselines VOMCPOW and POMCPOW,
respectively, particularly in the Pushbox problems. These
results (as well as those of ADVT and all its variants) in-
dicate the benefit of re-using partial search trees that were
generated in previous planning steps instead of re-
computing the policy at every planning step. Similarly,
the baselines that use stochastic Bellman backups tend to
outperform the ones that use Monte Carlo backups, except
for the VDP-Tag problem. This is consistent with our results
for ADVT and ADVT-MC and indicates that stochastic
Bellman backup is a simple, yet viable tool to improve the
performance of MCTS-based solvers.

7. Conclusion

We propose a new sampling-based online POMDP solver,
called ADVT, that scales well to POMDPs with high-
dimensional continuous action and observation spaces.
Our solver builds on a number of works that uses adaptive
discretization of the action space, and introduces a more
effective adaptive discretization method that uses novel
ideas: A Voronoi tree–based adaptive hierarchical dis-
cretization of the action space, a novel cell-size-aware re-
finement rule, and a cell-size-aware upper-confidence
bound. For continuous observation spaces, our solver
adopts the Progressive Widening and explicit belief rep-
resentation strategy, enabling ADVT to scale to higher-
dimensional observation spaces. ADVT shows strong em-
pirical results against state-of-the-art algorithms on several
challenging benchmarks. We hope this work further ex-
pands the applicability of general-purpose POMDP solvers.
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