
Bayes-Adaptive Monte-Carlo Planning for Type-Based Reasoning
in Large Partially Observable Environments
Jonathon Schwartz

The Australian National University

Canberra, Australia

jonathon.schwartz@anu.edu.au

Hanna Kurniawati

The Australian National University

Canberra, Australia

hanna.kurniawati@anu.edu.au

ABSTRACT
Designing autonomous agents that can interact effectively with

other agents without prior coordination is an important problem in

multi-agent systems. Type-based reasoning methods achieve this

by maintaining a belief over a set of potential behaviours for the

other agents. However, current methods are limited in that they

assume full observability of the state and actions of the other agent

or scale poorly to larger problems. Addressing these limitations,

we propose Bayes-Adaptive Partially Observable Stochastic Game

Monte-Carlo Planning (BAPOSGMCP) —a general online planning

method for type-based reasoning in large partially observable envi-

ronments. BAPOSGMCP accounts for partial observability by main-

taining a belief over the type of the other agent along with their

interaction-history and the state of the environment. To handle the

computational challenges this presents, BAPOSGMCP combines

a number of recent advances in Monte-Carlo Tree Search with a

novel meta-policy for selecting the best policy to guide planning

from each belief. We provide a comprehensive evaluation and abla-

tion studies in cooperative, competitive and mixed large partially

observable multi-agent environments and demonstrate that our

method is able to effectively adapt online to diverse sets of agents.

KEYWORDS
Multi-agent DecisionMaking, Partially Observable Stochastic Games,

Type-Based Reasoning, Planning under Uncertainty

1 INTRODUCTION
The development of autonomous agents that can effectively interact

with other agents without prior coordination is a core research area

in multi-agent systems [2, 13, 58]. Such autonomous agents must

have the ability to reason about the behaviours and intentions

of other agents. Type-based reasoning methods give agents this

ability by maintaining a belief over a set of types for the other

agents [1, 4, 10, 11, 17, 57]. A type is defined by a mapping from

the agent’s interaction history to a probability distribution over

actions, and completely specifies the agent’s behaviour. If the set of

types is sufficiently representative, type-based reasoning methods

can lead to fast adaptation and effective interaction without prior

coordination [3, 10].

A common assumption of existing type-based reasoningmethods

is that the agent has full observability of the state of the environ-

ment and the other agents’ actions [6]. However, for many practical

problems, access to the history of observations and actions of the

other agents is not available. In such cases, it becomes necessary for

an agent to reason not only about the type of the other agent, but

also about their interaction history and the state of the environment.

This introduces significant computational and technical challenges.

While there has been progress on modelling frameworks to address

the technical challenges [12, 29, 31], existing planning based meth-

ods have been restricted to relatively small problems due to the

computational challenges [17, 25–27].

In this paper, we aim to develop an efficient planning method

for type-based reasoning in partially observable environments. To

be practical, such an approach should be flexible (i.e. it can be used

with different sets of other agent types and in general environments)

and scalable (i.e. it can be used for large problems with more than

a few hundred states).

To this end, we build on the recent successes of online Monte-

Carlo based planning methods. Based on Monte-Carlo Tree-Search

(MCTS), Monte-Carlo planning has been effective in large com-

petitive [15, 16, 50, 54, 55] and cooperative multi-agent problems

[39], as well as partially observable single-agent environments

[36, 56, 60, 66]. A number of Monte-Carlo based methods have been

proposed for type-based reasoning in fully observable multi-agent

environments [5, 9, 13, 58, 65, 67]. However, none can handle large

partially observable environments.

In this work we propose Bayes-Adaptive Partially Observable

Stochastic Game Monte-Carlo Planning (BAPOSGMCP), an online

planning algorithm for type-based reasoning in large partially ob-

servable, multi-agent environments. Using the joint environment

model, BAPOSGMCP maintains a belief over the type of the other

agent along with their interaction history and the environment

state. Such a belief allows the planning agent to model the joint

uncertainty from the state of the environment, the type of the other

agent, and the internal state of the other agent. BAPOSGMCP ad-

dresses a number of challenges that have typically limited MCTS

based methods in partially observable environments by combining

recent advances in MCTS that make use of a policy to guide search

[55] with a meta-policy to select which policy to use for search

[37, 63, 64]. We evaluate the proposed method on large competitive,

cooperative, and mixed partially observable environments - the

largest of which has four agents and on the order of 10
14

states and

10
8
observations - and demonstrate that it is able to rapidly adapt

and interact effectively without explicit prior coordination.

2 RELATEDWORK
Monte-Carlo Planning:We are interested in Monte-Carlo plan-

ning methods for partially observable and multi-agent environ-

ments where the agent must adapt to a set of possible types of other

agents.When coordination between agents is involved, this problem

becomes an ad-hoc teamwork problem [13, 58]. Various planning

methods have been proposed for ad-hoc teamwork and type-based

reasoning, including those based on stage games [65], Bayesian

beliefs [11], POMDPs [9], type-based reasoning with parameters

[5], and for the many agent setting [67]. All these methods use

MCTS for online adaptation but are limited to environments where

the state and actions of the other agents are fully observed. In the

agent modelling setting [6], several online Monte-Carlo planning

methods have been proposed for the Interactive POMDP (I-POMDP)

[29] framework, which models the other agents using recursive-

reasoning. Including methods based on finite state-automata [46],

nested MCTS [52], and for open multi-agent systems [28]. Other

works have focused on planning in the strictly cooperative set-

ting. Czechowski and Oliehoek [24] propose a method for improv-

ing the coordination of a team of decentralized agents in fully-

observable environments. While Choudhury et al. [18] propose a

scalable MCTS based method for centralized control of a team of

agents in fully-observable environments. MCTS is also widely used

in game-theory [35]. Most relevant to our work is Information Set

MCTS [22] for two-player imperfect-information zero-sum games

and operates on known information sets, as opposed to beliefs over

states.

Bayes Adaptive Planning: Our proposed method falls into the

category of online Bayes-adaptive (BA) planning or Bayesian Re-

inforcement Learning (BRL) [59]. A number of MCTS based BRL

methods have been proposed including for BA-MCP for MDPs [30],

BA-POMCP for POMDPs [33], and BA-MPOMDPs for multi-agent

POMDPs involving centralized control of multiple agents [7]. All

these methods focus on learning parameters of the environment’s

transition dynamics. In our work we instead focus on learning the

policy type of the other agent.

Combining Reinforcement Learning and Search: In recent

years, a number of methods have been proposed that combine Rein-

forcement Learning (RL) withMCTS. Self-play andMCTS have been

combined to improve learning and final performance in two-player

fully observable zero-sum games with a known environment model

[54, 55] and using a learned model [50]. Similar methods have been

applied to zero-sum imperfect-information games [14, 16]. Our

method builds on a number of advances made by these works in

combining RL policies with search, specifically relating to using

an existing policy as a prior for search. However, we apply these

advances outside of self-play and zero-sum games, instead focusing

on online adaption to a set of possible types of other agents with

no assumptions made about the reward structure of the environ-

ment. Most closely related to the proposed method is SPARTA [39]

which combines search with a shared blueprint policy for improved

teamwork in Decentralized POMDPs. They focus on the setting

where there is prior coordination for decentralized execution in a

cooperative game. We generalize this approach to settings where

the other agents may be using one of multiple types, where there

is no prior coordination, and beyond cooperative environments.

3 PROBLEM DESCRIPTION
We consider the problem of type-based reasoning in partially observ-
able environments. Suppose a single planning agent which must

interact with one or more other agents each of which is assumed

to be one of a fixed set of types [2, 58]. Each type is a complete

specification of that agent’s behaviour, defined as a mapping from

the agent’s interaction history to a probability distribution over

actions. Note that this definition of type is equivalent to a policy in

the planning under uncertainty and RL literature and so we use the

terms interchangeably. The planning agent knows the set of types,

but does not know the true type of the other agent a priori.
We model the problem as a Partially Observable Stochastic Game

(POSG) [31] which consists of 𝑁 agents indexed I = {1, . . . , 𝑁 }, a

discrete set of states S, an initial state distribution 𝑏0 ∈ Δ(S), the
joint action space

®A = A1×· · ·×A𝑁 , the finite set of observations

O𝑖 for each agent 𝑖 ∈ I, a state transition function T : S× ®A×S →
[0, 1] specifying the probability of transitioning to state 𝑠 ′ given
joint action ®𝑎 was performed in state 𝑠 , an observation function for

each agentZ𝑖 : S × ®A × O𝑖 → R specifying the probability that

performing joint action ®𝑎 in state 𝑠 results in observation𝑜𝑖 for agent
𝑖 , and a bounded reward function for each agent R𝑖 : S × ®A → R.

At each step, each agent 𝑖 ∈ I simultaneously perform an ac-

tion 𝑎𝑖 ∈ A𝑖 and receive an observation 𝑜𝑖 ∈ O𝑖 and reward

𝑟𝑖 ∈ R. The interaction can continue for a finite or infinite number

of steps, where the number of steps is called the horizon. Each
agent has no direct access to the environment state or knowl-

edge of the other agent’s actions and observations. Instead they

must rely only on information in their interaction-history up to the

current time step 𝑡 : ℎ𝑖,𝑡 = ⟨𝑜𝑖,0𝑎𝑖,0𝑜𝑖,1𝑎𝑖,1 . . . 𝑎𝑖,𝑡−1𝑜𝑖,𝑡 ⟩ . The com-

bined interaction histories of all agents is the joint history, denoted
®ℎ𝑡 = ⟨®𝑜0 ®𝑎0®𝑜1 ®𝑎1 . . . ®𝑎𝑡−1®𝑜𝑡 ⟩. Agents select their next action using

their policy 𝜋𝑖 which is a mapping from their history ℎ𝑖,𝑡 to a prob-

ability distribution over their actions, where 𝜋𝑖 (𝑎𝑖 |ℎ𝑖,𝑡) denotes the
probability of agent 𝑖 performing action 𝑎𝑖 given history ℎ𝑖,𝑡 .

In this work we make no assumption about the reward structure

of the environment, however we assume the other agents are using

policies from a known fixed set of policies (where each policy

corresponds to an agent type). We denote the planning agent by 𝑖 ,

and all other agents collectively using −𝑖 . The set of fixed policies

for the other agents is Π = {𝜋−𝑖,𝑚 |𝑚 = 1, . . . , 𝑀}, where 𝑀 is

the number of policies in the set. Furthermore, we assume the

policies used by the other agents are selected based on a known

prior distribution 𝜌 , where 𝜌 (𝜋−𝑖,𝑚) = 𝑃𝑟 (𝜋−𝑖,𝑚). Note that when
there are more than two agents in the environment, 𝜌 defines the

probability of each joint policy for the other agents (one policy per

agent), thus making it possible to assign a prior over teams of agents.

The goal of the planning agent is to maximize it’s expected return

with respect to 𝜌 given by 𝐺𝑖,𝑡 = E𝜋−𝑖,𝑚∼𝜌
[∑∞

𝑘=𝑡
𝛾𝑘−𝑡𝑟𝑖,𝑘 |𝜋−𝑖,𝑚

]
,

where 𝛾 ∈ [0, 1) is the discount factor [2, 58].
We assume the planning agent has access to a generative model

of the joint dynamics of the environment. The generative model

G provides a sample of the next state, joint observation, and joint

reward, given a state and joint action: ⟨𝑠𝑡+1, ®𝑜𝑡+1, ®𝑟𝑡+1⟩ ∼ G(𝑠𝑡 , ®𝑎𝑡).

4 METHOD
Our goal is to develop a scalable planning algorithm for type-based

reasoning in partially observable environments. To this end, we

introduce Bayes-Adaptive Partially Observable Stochastic Game

Monte-Carlo Planning (BAPOSGMCP) which maintains a joint

belief over the environment state, other agent type, and other agent

history, allowing it to perform Bayesian learning of types online.

Modelling the problem this way introduces additional computa-

tion challenges. To overcome them, BAPOSGMCP uses a tailored

multi-agent MCTS algorithm in combination with a meta-policy

for selecting the best policy to guide planning from each belief.

4.1 Bayesian Learning of Types
In partially observable environments planning agents must account

for three interdependent sources of uncertainty: the environment

state, the type/policy of the other agent, and the other agent’s

interaction-history.

We adopt a similar approach to the I-POMDP framework [29] and

account for these sources of uncertainty by using a joint belief over

the environment state 𝑠 ∈ S, the other agent policy 𝜋−𝑖 ∈ Π, and the
joint history

®ℎ ∈ ®H 1
. Each belief is thus a distribution over state-

policy-history tuples, which we refer to as history-policy-states. To

distinguish between environment states and history-policy-states,

we denote the latter using𝑤 and it’s components using dot notation:

𝑤.𝑠 ,𝑤.®ℎ,𝑤.𝜋−𝑖 . The space of history-policy-states is denotedW.

The planning agent’s belief is a distribution over history-policy-

states: 𝑏𝑖 (𝑤 |ℎ𝑖) = 𝑃𝑟 (𝑤𝑡 = 𝑤 |ℎ𝑖,𝑡 = ℎ𝑖).
Defining the belief using history-policy-states transforms the

original POSG problem into a Partially Observable Markov De-

cision Process (POMDP) for the planning agent where the state,

other agent policy, and joint history are learned online. The agent’s

current belief 𝑏𝑖 (ℎ𝑖) can be computed exactly using Bayes rule

given the initial environment state distribution 𝑏0 and the prior

over the other agent policies 𝜌 . Unfortunately, while we assume the

policy set is discrete and finite, the size of the joint history space

®H grows exponentially with the planning horizon. This makes

exact belief updates intractable for all but the smallest problems

and planning horizons. To address this, we build on previous work

[7, 30, 33, 56] that solves this problem using Monte-Carlo based

sampling methods.

4.2 Meta-Policy
Monte-Carlo planning has been successfully applied to very large

planning problems using PUCT [49] and access to a good policy

for guiding search [50, 55]. The question becomes where does this

search policy come from? Prior work in the multi-agent setting

[50, 55] dealt with zero-sum two-player games where it suffices to

train a single Nash-equilibrium policy to get robust performance

against any opponent [44]. In this work we make no assumptions

about the reward structure of the environment, only that the other

agents are using some policy from a known and fixed distribution

𝜌 . In practice it is possible to design or train a policy that performs

well against a known mixture of policies [43]. We aim to avoid this

since any changes to 𝜌 would require a new search policy.

In this work, we use the set of policies Π to generate a meta-
policy for use as a search policy. We define a meta-policy as a

function mapping a policy to a mixture of policies 𝜎𝑖 : Π → Δ(Π).
For our purposes its a mapping from the set of fixed policies to

a distribution over this set, so that 𝜎𝑖 (𝜋𝑖, 𝑗 |𝜋−𝑖,𝑘) = 𝑃𝑟 (𝜋𝑖, 𝑗 |𝜋−𝑖,𝑘)
for 𝜋𝑖, 𝑗 , 𝜋−𝑖,𝑘 ∈ Π. Ideally the meta-policy would map from the

planning agent’s belief to a mixture over policies. However, finding

a mapping from belief to a mixture over policies reduces to the

original problem of finding an optimal policy over actions for the

1
Technically, only the history of the other agent is required, but we include the full

joint history in practice since it makes it simpler to generalize to more than two agents.

planning agent. Furthermore computing a meta-policy in this way

would require re-computing the meta-policy each time a policy is

added or removed from the set Π.
To design the meta-policy we propose to use the pairwise per-

formance of the policies in Π generated in an empirical-game. An

empirical game is a normal-form game where the actions are

policies and the expected returns for each joint policy are estimated

from sample games [63, 64]. Formally, an empirical game is a tuple

⟨Π,𝑈 Π, 𝑁 ⟩ where 𝑁 is the number of players, Π = ⟨Π1, . . .Π𝑁 ⟩ is
the set of policies for each player and 𝑈 Π

: Π → R𝑁 is a payoff

table of expected returns for each joint policy played by all players.

Empirical games have the advantage that they are relatively inex-

pensive to compute, depending on the representation of the policies,

and adding a new policy only requires computing the payoffs for

that policy.

There are a number of ways to define a meta-policy in terms of

the empirical-game payoffs, the simplest being the greedy meta-
policy 𝜎𝐺

𝑖
. This meta-policy selects 𝜋𝑖 to be the policy in Π that

has the highest payoff against the given other agent policy 𝜋−𝑖 ,
with ties broken uniform randomly.

𝜎𝐺
𝑖

has two main potential flaws. Firstly, 𝜎𝐺
𝑖

is defined based

on the expected performance from the start of an episode. It’s

possible that the best response policy from the set Π may change

depending on the planning agent’s current belief. Secondly, the way

we have defined the meta-policy assumes full knowledge of the

other agent’s policy after a single step, which may lead to overly

greedy behaviour when using 𝜎𝐺
𝑖
.

To address these potential flaws, we also propose the softmax
meta-policy 𝜎𝑆

𝑖
where, 𝜎𝑆

𝑖
(𝜋𝑖 |𝜋−𝑖) = 1

𝜂 𝑒
𝑈 Π (𝜋𝑖 ,𝜋−𝑖)/𝜏

with normal-

izing constant 𝜂 =
∑
𝜋 ′−𝑖

𝑒𝑈
Π (𝜋𝑖 ,𝜋 ′−𝑖)/𝜏 and temperature hyperpa-

rameter 𝜏 which controls how uniform or greedy the policy is.

Additionally, we define the uniform meta-policy 𝜎𝑈
𝑖

which

uses a uniform distribution overΠ. Together𝜎𝐺
𝑖
,𝜎𝑆

𝑖
, and𝜎𝑈

𝑖
provide

a spectrum of meta-policies from most to least exploitative with

respect to the empirical-game.

Of course the planning agent does not know the policy of the

other agent, rather it has a belief over them. Thus, during plan-

ning at the decision node for a given history ℎ𝑖 the search prob-

ability for each action edge 𝑃 (ℎ𝑖𝑎𝑖) are generated as a weighted

mixture, 𝑃 (ℎ𝑖𝑎𝑖) =
∑
𝜋−𝑖 ∈Π 𝑏𝑖 (𝜋−𝑖 |ℎ𝑖)

∑
𝜋𝑖 ∈Π 𝜎𝑖 (𝜋𝑖 |𝜋−𝑖)𝜋𝑖 (𝑎𝑖 |ℎ𝑖)

where 𝑏𝑖 (𝜋−𝑖 |ℎ𝑖) is the marginal probability computed by sum-

ming over all history-policy-states in the belief.

4.3 Multi-agent MCTS
Being an online planner, each step BAPOSGMCP executes a search

to find the next action, followed by an update to compute the next

belief given the most recent observation. To do this BAPOSGMCP

builds a search tree 𝑇 of agent histories using the PUCT algorithm

[49, 55] and a meta-policy as the search policy. Each node of the

tree corresponds to a history, where 𝑇 (ℎ𝑖) denotes the node for
history ℎ𝑖 . Each node maintains a belief 𝑏𝑖 (ℎ𝑖) over history-policy-
states, represented as a set of unweighted particles where each

particle corresponds to a sample history-policy-state𝑤 . For each

action 𝑎𝑖 ∈ A𝑖 from ℎ𝑖 there is an edge ℎ𝑖𝑎𝑖 that stores a set

of statistics ⟨𝑁 (ℎ𝑖𝑎𝑖), 𝑃 (ℎ𝑖𝑎𝑖),𝑊 (ℎ𝑖𝑎𝑖), 𝑄 (ℎ𝑖𝑎𝑖)⟩, where 𝑁 (ℎ𝑖𝑎𝑖)
is the visit count, 𝑃 (ℎ𝑖𝑎𝑖) is the prior probability of selecting 𝑎𝑖

(a) Driving (b) Level-Based Foraging (LBF) (c) Pursuit-Evasion (PE) (d) Predator-Prey (PP)

Figure 1: Experiment Environments

given ℎ𝑖 ,𝑊 (ℎ𝑖𝑎𝑖) is the total action-value, and𝑄 (ℎ𝑖𝑎𝑖) is the mean

action-value.

4.3.1 Tree Search. For each real step at time 𝑡 in the environment

BAPOSGMCP runs MCTS from the planning agent’s current belief

𝑏𝑖 (ℎ𝑖,𝑡) and then selects an action 𝑎𝑖,𝑡 greedily with respect to

visit count at the root belief. MCTS generates a series of simulated

episodes. Each simulation starts from the planning agent’s current

belief, the root of the tree 𝑇 , and proceeds in three stages. Pseudo-

code for the search procedure is shown in Algorithm 1.

Selection: Each simulation starts from the root node of the tree

𝑇 (ℎ𝑖,𝑡) and finishes when the simulation reaches a leaf node𝑇 (ℎ𝑖,𝐿)
after some 𝐿 − 𝑡 simulated steps. At the start of each simulation a

history-policy-state particle is sampled from the agents belief at the

root node𝑤𝑡 ∼ 𝑏𝑖 (ℎ𝑖,𝑡). For each simulation step 𝑙 = 𝑡, 𝑡 +1, . . . , 𝐿−
1, 𝐿, actions must be selected for the planning agent 𝑖 and the other

agent −𝑖 . The planning agent’s action is selected using the PUCT

algorithm [49, 50]:

𝑎𝑖,𝑙 = argmax

𝑎𝑖 ∈A𝑖

{
𝑄 (ℎ𝑖,𝑙𝑎𝑖) +𝐶 (ℎ𝑖,𝑙)𝑃 (ℎ𝑖,𝑙𝑎𝑖)

√︁
𝑁 (ℎ𝑖,𝑙)

1 + 𝑁 (ℎ𝑖,𝑙𝑎𝑖)

}
(1)

where 𝑁 (ℎ𝑖,𝑙) =
∑
𝑎𝑖 ∈A𝑖

𝑁 (ℎ𝑖,𝑙𝑎𝑖) and𝐶 (ℎ𝑖,𝑙) is the exploration
rate,𝐶 (ℎ𝑖,𝑙) = 𝑐𝑖𝑛𝑖𝑡 + log

(
𝑁 (ℎ𝑖,𝑙)+𝑐𝑏𝑎𝑠𝑒+1

𝑐𝑏𝑎𝑠𝑒

)
. The action for the other

agent is sampled using their policy and history contained within

the sampled history-policy-state: 𝑎−𝑖,𝑙 ∼ 𝑤𝑙 .𝜋−𝑖 (𝑤𝑙 .ℎ−𝑖).
Following joint action selection, the next environment state,

joint observation, and rewards are sampled using the generative

model: ⟨𝑠𝑙+1, ®𝑜𝑙+1, ®𝑟𝑙+1⟩ ∼ G(𝑤𝑙 .𝑠, ®𝑎𝑙). These values are then used

in the planning agents next-step history, ℎ𝑖,𝑙+1 = ℎ𝑖,𝑙𝑎𝑖,𝑙𝑜𝑖,𝑙+1, and

the next-step history-policy-state,𝑤𝑙+1 = ⟨𝑠𝑙+1,𝑤𝑙 .𝜋−𝑖 ,𝑤𝑙 .
®ℎ®𝑎𝑙 ®𝑜𝑙+1⟩.

The simulation ends after 𝐿 − 𝑡 simulation steps, when it reaches a

leaf node 𝑇 (ℎ𝑖,𝐿) - a node in the tree that has not been expanded.

Expansion: Once a leaf node 𝑇 (ℎ𝑖,𝐿) is reached it is evaluated

and added to the tree and an edge is added to it for each action.

Evaluation of the leaf node involves estimating two values; the value

𝑣𝑖,𝐿 and the policy 𝑝𝑖,𝐿 of the node. The policy 𝑝𝑖,𝐿 is computed

using the meta-policy and the current simulated history-policy-

state particle, where 𝑝𝑖,𝐿 (𝑎𝑖) =
∑
𝜋𝑖 𝜎 (𝜋𝑖 |𝑤𝐿 .𝜋−𝑖)𝜋𝑖 (𝑎𝑖 |ℎ𝑖,𝐿).

The value 𝑣𝑖,𝐿 is computed either by using the value function

from the meta-policy or using a rollout. When using the value

function from the meta-policy the value is computed as 𝑣𝑖,𝐿 =∑
𝜋𝑖 𝜎 (𝜋𝑖 |𝑤𝐿 .𝜋−𝑖)𝑉 𝜋𝑖 (ℎ𝑖,𝐿), where 𝑉 𝜋𝑖 (ℎ𝑖,𝐿) is the value function

Algorithm 1 BAPOSGMCP Search

procedure Search(ℎ𝑖)
for 1, ..., 𝑁𝑠𝑖𝑚𝑠 do

if ℎ𝑖 = ∅ then
𝑠 ∼ 𝑏0; 𝜋−𝑖 ∼ 𝜌
𝑤 ← ⟨𝑠, 𝜋−𝑖 , ∅⟩

else
𝑤 ∼ 𝑏𝑖 (·, ℎ𝑖)

end if
𝜋𝑖 ∼ 𝜎𝑖 (𝑤.𝜋−𝑖)
Simulate(𝑤 , ℎ𝑖 , 𝜋𝑖 , 0)

end for
return argmax𝑎𝑖 ∈A𝑖

𝑁 (ℎ𝑖𝑎𝑖)
end procedure
procedure Simulate(𝑤 , ℎ𝑖 , 𝜋𝑖 , 𝑑𝑒𝑝𝑡ℎ)

if 𝛾𝑑𝑒𝑝𝑡ℎ < 𝜖 then
return 0

end if
if ℎ𝑖 ∉ T𝑖 then

return Expand(𝑤 , ℎ𝑖 , 𝜋𝑖 , 𝑑𝑒𝑝𝑡ℎ)

end if
𝑎𝑖 ← PUCT(ℎ𝑖)

𝑎−𝑖 ∼ 𝑤.𝜋−𝑖 (·|𝑤.ℎ−𝑖)
®𝑎 ← ⟨𝑎𝑖 , 𝑎−𝑖 ⟩
⟨𝑠 ′, ®𝑜, ®𝑟 ⟩ ∼ G(𝑤.𝑠, ®𝑎)
𝑤 ′ ← ⟨𝑠 ′,𝑤 .®ℎ®𝑎®𝑜,𝑤 .𝜋−𝑖 ⟩
𝐺𝑖 ← 𝑟𝑖 + 𝛾 Simulate(𝑤 ′, ℎ𝑖𝑎𝑖𝑜𝑖 , 𝜋𝑖 , 𝑑𝑒𝑝𝑡ℎ + 1)
𝑏𝑖 (ℎ𝑖𝑎𝑖𝑜𝑖) ← 𝑏𝑘 (ℎ𝑖𝑎𝑖𝑜𝑖) ∪ {𝑤 ′}
𝑁 (ℎ𝑖𝑎𝑖) ← 𝑁 (ℎ𝑖𝑎𝑖) + 1
𝑊 (ℎ𝑖𝑎𝑖) ←𝑊 (ℎ𝑖𝑎𝑖) +𝐺𝑖

𝑄 (ℎ𝑖𝑎𝑖) ← 𝑊 (ℎ𝑖𝑎𝑖)
𝑁 (ℎ𝑖𝑎𝑖)

for 𝑎𝑖 ∈ A𝑖 do
𝑃 (ℎ𝑖𝑎𝑖) ← 𝜋𝑖 (𝑎𝑖 |ℎ𝑖)−𝑃 (ℎ𝑖𝑎𝑖)

𝑁 (ℎ𝑖)
end for
return 𝐺𝑖

end procedure

of policy 𝜋𝑖 for agent 𝑖’s history at the leaf node. Estimating the

value using a rollout involves continuing the simulation until a

terminal state is reached and then using the sum of rewards from

this simulated trajectory as the value estimate. During the rollout

actions for the planning agent 𝑖 are selected using a policy sampled

from the meta-strategy 𝜋𝑖 ∼ 𝜎 (𝑤𝐿 .𝜋−𝑖). Actions for the other agent
are selected using the policy in the history-policy-state,𝑤𝐿 .𝜋−𝑖 .

After the value 𝑣𝑖,𝐿 and the policy 𝑝𝑖,𝐿 of the leaf node are esti-

mated, each edge ℎ𝑖,𝐿𝑎𝑖 from the newly expanded node is initialized

to ⟨𝑁 (ℎ𝑖,𝐿𝑎𝑖) = 0, 𝑃 (ℎ𝑖,𝐿𝑎𝑖) = 𝑝𝑖,𝐿,𝑊 (ℎ𝑖,𝐿𝑎𝑖) = 0, 𝑄 (ℎ𝑖,𝐿𝑎𝑖) = 0⟩.
Backup: At the end of the simulation the statistics for each edge

along the simulated trajectory are updated.

For each simulation step 𝑙 = 𝑡, 𝑡+1, . . . , 𝐿−1, 𝐿, we form a 𝐿−𝑙 step
estimate of the discounted sum of rewards bootstrapped from the

value estimate 𝑣𝑖,𝐿 :𝐺𝑖,𝑙 =
∑𝐿−𝑙
𝜏=1

[
𝛾𝜏−1𝑟𝑖,𝑙+𝜏

]
+𝛾𝐿−𝑙𝑣𝑖,𝐿 ., This is then

used to update the statistics for each edge ℎ𝑖,𝑙𝑎𝑖 traversed during

the simulation as follows: 𝑁 (ℎ𝑖,𝑙𝑎𝑖) = 𝑁 (ℎ𝑖,𝑙𝑎𝑖) + 1,𝑊 (ℎ𝑖,𝑙𝑎𝑖) =
𝑊 (ℎ𝑖,𝑙𝑎𝑖) + 𝐺𝑖,𝑙 , 𝑄 (ℎ𝑖,𝑙𝑎𝑖) =

𝑊 (ℎ𝑖,𝑙𝑎𝑖)
𝑁 (ℎ𝑖,𝑙𝑎𝑖) . The policy prior for each

edge connected to a node traversed during the simulation is also

updated. For 𝑙 = 𝑡, . . . , 𝐿 for each 𝑎𝑖 ∈ A𝑖 we update the policy

prior for the edge ℎ𝑖,𝑙𝑎𝑖 as 𝑃 (ℎ𝑖,𝑙𝑎𝑖) =
𝜋𝑖 (𝑎𝑖 |ℎ𝑖)−𝑃 (ℎ𝑖𝑎𝑖)

𝑁 (ℎ𝑖,𝑙) . This differs

from previous works [50, 55] which do not update the prior once it

has been set. Our setting differs in that each node in the tree is an

estimate of the belief of the planning agent. When the agent first

expands a node the estimate of the belief is likely very inaccurate,

as it contains only a single history-policy-state particle, and thus

the policy prior will also be inaccurate. As the node is visited during

subsequent simulations the belief accuracy improves and so the

policy prior is iteratively updated to reflect this.

4.3.2 Tree Update. Once search is complete, the planning agent

selects the action at the root node with the greatest visit count 𝑎𝑖,𝑡 =

argmax𝑎𝑖
𝑁 (ℎ𝑖,𝑡𝑎𝑖) and receives an observation 𝑜𝑖,𝑡+1 from the real

environment. At this point 𝑇 (ℎ𝑖,𝑡𝑎𝑖,𝑡𝑜𝑖,𝑡+1) becomes the new root

node of the search tree and the agent’s current belief becomes

𝑏𝑖 (ℎ𝑖,𝑡𝑎𝑖,𝑡𝑜𝑖,𝑡+1). Any branches of the tree that are not descendants

of 𝑇 (ℎ𝑖,𝑡𝑎𝑖,𝑡𝑜𝑖,𝑡+1) are pruned. Since BAPOSGMCP uses particle

filtering for belief representation and updates, particle deprivation

is possible. To alleviate this, in practice additional particles are

added during the belief update using rejection sampling or a domain

specific function.

5 EXPERIMENTS
5.1 Multi-Agent Environments
We evaluated the proposed method on one cooperative, one compet-

itive, and two mixed environments (Figure 1). The largest of which

has four agents and on the order of 10
14

states and 10
8
observations.

Further details for each environment are provided in Appendix A.

Driving: A general-sum grid world navigation problem requiring

coordination [40, 42]. Each agent controls a vehicle and is tasked

with driving the vehicle from start to destination while avoiding

crashing into other vehicles.

Level-Based Foraging (LBF): is a mixed incentive environment

where agents must collect food in a grid world [3, 5]. We use the

partially-observable version of LBF used in [19, 48].

Pursuit-Evasion (PE): An asymmetric zero-sum grid world prob-

lem involving two agents, an evader and a pursuer [52, 53]. The

evader’s goal is to reach a safe location, while the the pursuer’s aim

is to spot the evader before it reaches it’s goal.

Predator-Prey (PP): A co-operative grid world problem involving

multiple predator agents working together to catch prey controlled

by the environment [38, 61]. We used two-agent and four-agent

versions of the environment both containing three prey. The two-
agent version had two predators with each prey requiring two

predators to capture. The four-agent version had four predators

with each prey requiring three predators to capture.

5.2 Policies
For each environment, we created a set of policies Π which was

used for the other agent policies during evaluations and also for

the meta-policy 𝜎𝑖 and policy prior 𝜌 . For the Driving, PE, and PP

environments the policies were deep neural networks with actor-

critic architectures trained using the PPO algorithm [51]. Additional

details including training parameters and empirical-game payoff

matrices are provided in Appendix B.

Driving: For this problem we used a set of five 𝐾-level reasoning

(KLR) policies where the level 𝑘 agent is trained as a best response

to the level 𝑘 − 1 agent [20]. We used a uniform distribution over

the policies with reasoning levels 𝑘 = 0, 1, 2, 3 for 𝜌 . While the

meta-policy was defined using all five policies, which included the

level 𝑘 = 4 policy. This meant the planning agent had access to a

best-response for all the policies in 𝜌 and allowed a fair comparison

against the Best-Response baseline (presented in Section 5.3).

Level-Based Foraging (LBF): Here we used the set of four heuris-

tic policies used in prior work [5, 47]. Note that none of the policies

in the set are best-responses to any other policy in the set, thus test-

ing the planning agent’s ability to improve on the prior-knowledge

provided by themeta-policy.We used a uniform distribution over all

four policies as the prior 𝜌 and all four policies in the meta-policy.

Pursuit-Evasion (PE): For the PE environment we again trained

KLR policies for𝐾 = 4. Since this problem is asymmetric, we trained

different policies for the evader and pursuer agents. Themeta-policy

and prior 𝜌 were defined same as the Driving environment.

Predator-Prey (PP): For this fully cooperative problem we trained

five independent teams of agents using self-play [62] where each

team consisted of identical copies of the same policy. We used a

uniform distribution over five teams for the prior 𝜌 , with each team

made up of copies of the same policy from set of five trained self-

play policies - one copy in the two-agent version, and three copies

in the four-agent version. This setup tested the planning agent’s

ad-hoc teamwork ability. The meta-policy was defined using all five

policies in both versions.

5.3 Baselines
While there have been several planning methods proposed for type-

based reasoning and ad-hoc teamwork [5, 9, 11, 65, 67], to the best of

the authors knowledge, the proposedmethod is the first to tackle the

setting where all agents have partial observability. Furthermore, the

size of the environments meant existing agent modelling algorithms

for partially observable environments were intractable [26, 27, 45,

46]. As such, we propose a number of baselines utilizing the set of

fixed-policies Π, two of which are indicative of upper and lower

bounds on the performance of BAPOSGMCP, while the other two

test the benefits of different components of our approach.

Meta-policy: Selects a policy from the set Π at the start of the

episode based on the meta-policy with respect to the distribution 𝜌 .

This acts as a lower bound on the performance of BAPOSGMCP

with access to the meta-policy but without using beliefs or search.

Best-Response: This is the best performing policy from the set of

fixed policies Π against each policy, assuming full-knowledge of

the policy of the other agent. This acts as an upper-bound given

the policies in the set are best-response policies to other policies in

the set, as is the case in the Driving, PE, and PP experiments.

PO-Meta: This baseline maintains a belief over history-policy-

states and then uses the meta-policy to compute the action distri-

bution for the next step with respect to this belief. This provides

baseline performance of BAPOSGMCP using beliefs and the meta-

policy but without search.

PO-MetaRollout: This baseline maintains a belief over the history-

policy-states same as PO-Meta and BAPOSGMCP. Each step it evalu-

ates available actions from the root node using one-step look-ahead

search using the meta-policy for node evaluation. This provides

baseline performance of BAPOSGMCP without the search tree - i.e.

using only beliefs, the meta-policy, and one-step look-ahead search.

5.4 Experimental Setup
We evaluated BAPOSGMCP and baselines in each environment.

For each method we ran a minimum of 400 episodes, or 48 hours

of total computation time, whichever came first. For the planning

based methods, we tested each using 𝑁𝑠𝑖𝑚𝑠 ∈ [10, 50, 100, 1000]
simulations in Driving, PE, and PP environments and 𝑁𝑠𝑖𝑚𝑠 ∈
[10, 50, 100, 1000, 2000] simulations in the LBF environment. After

each real step in the environment 𝑁𝑠𝑖𝑚𝑠/16 additional particles

were added during belief reinvigoration using rejection sampling,

similar to previous work [56]. We capped the number of rejected

sampled at 1000 for all experiments in order to limit update times.

For all experiments we used 𝜖 = 0.01 and a discount of 𝛾 = 0.99,

giving a discount horizon beyond the maximum step limit of all

environments.

We tested a number of bandit algorithms in preliminary exper-

iments, including UCB1 [8], uniform, and PUCB [49] (results in

Appendix C). PUCB clearly performed best so all reported results are

based on PUCB for all methods tested.We chose search hyperparam-

eters based on prior work combining PUCB with MCTS [49, 50, 55].

We used exploration constants 𝑐𝑖𝑛𝑖𝑡 = 1.25 and 𝑐𝑏𝑎𝑠𝑒 = 20, 000

along with normalized 𝑄-values to handle the returns being out-

side of [0, 1] bounds in the tested environments. Dirichlet noise

𝐷𝑖𝑟 (𝛼) was added to the prior probabilities at each decision node

with 𝛼 =
|A𝑖 |
10

and a mix-in proportion of 0.5 for all problems.

For the Driving, PE, and PP problems each policy in Π was

represented as a neural network with policy and value function

outputs. As such, for these problems we used the value function

of the fixed-policies (as chosen by the meta-policy) for leaf node

evaluation, similar to existing approaches combining MCTS with

neural network policies [39, 50, 55]. This lead to similar perfor-

mance compared to using full rollouts, while significantly reducing

search time (see Appendix D for details).

Our implementation is open-source available at https://github.

com/Jjschwartz/ba-posgmcp.

(a) Driving (b) LBF

(c) PE (Evader) (d) PE (Pursuer)

(e) PP (two-agents) (f) PP (four-agents)

Figure 2: Mean episode return of BAPOSGMCP and baseline
methods. Results are for BAPOSGMCP and baselines using
the best choice of meta-policy. Shaded areas show the 95% CI.

5.5 Evaluation of Returns
Figure 2 shows the mean episode returns of BAPOSGMCP and base-

line methods with respect to the policy prior 𝜌 . We found that for

all environments the performance of BAPOSGMCP improved with

the number of simulations and given enough simulations BAPOS-

GMCP equals or outperforms all non-upper bound baselines across

all environments. Furthermore, in the Driving and PE problems the

performance converged towards the Best-Response upper-bound,

suggesting BAPOSGMCP converged towards Bayes-optimal per-

formance as the number of simulations increased.

The importance of the different aspects of BAPOSGMCP- beliefs,

search, and search tree - varied by environment, however using

all three lead to overall best performance given enough planning

time. In the mixed and competitive environments (Driving, LBF,

PE), maintaining a belief over history-policy-states combined with

the meta-policy produced similar or lower performance than using

the meta-policy alone, as shown by the performance of POMeta. In

the LBF and PE environments in particular we observe, from the

performance POMetaRollout, that combining beliefs with a simple

https://github.com/Jjschwartz/ba-posgmcp
https://github.com/Jjschwartz/ba-posgmcp

(a) LBF (b) PE (Evader) (c) PP (two-agents) (d) PP (two-agents)

Figure 3: Mean episode returns of BAPOSGMCP using different search policies. (a-c) compares performance of greedy 𝜎𝐺 ,
softmax 𝜎𝑆 (𝜏 = 0.25), and uniform 𝜎𝑈 meta-policies. (d) shows comparison between the best meta-policy, the best and worst
performing policy from the policy set Π, and the uniform random policy. Shaded areas show 95% CI.

one-step search was able to improve on themeta-policy, presumably

by permitting the planning agent to improve upon the meta-policy

as needed. Increasing the search depth, in the full BAPOSGMCP

algorithm, only improved on these results. In the ad-hoc teamwork

setting (PP environment), a large improvement was gained just

thru the use of a belief. This is likely due to this setting requiring

the planning agent to act in a way that aligns with it’s teammates -

i.e. acting similar to the aligned policy in the set Π - which occurs

via following the meta-policy with an accurate belief. Although, we

expect that this can be improved upon by a more powerful agent

such as BAPOSGMCPwith greater planning time. We observed that

in some environments the performance of POMeta suffers with a

higher number of simulations. This is due to the difficulty of particle

filtering based belief updates combined with a design choice of our

implementation, which we discuss further in Section 5.7. However,

this highlights another benefit of using a search tree, as in the full

BAPOSGMCP algorithm. Namely, by reusing particles generated

during search, it helps alleviate the computational demand of belief

updates.

5.6 Evaluation of Meta-Policies
To test the effect of meta-policy choice on performance we com-

pared BAPOSGMCP using the greedy 𝜎𝐺 , softmax 𝜎𝑆 (𝜏 = 0.25),

and uniform 𝜎𝑈 meta-policies in each environment. Meta-policies

were generated as described in Section 4.2 using the empirical pay-

off matrix in each environment (Appendix B). Figure 3 (a-c) shows

the mean episode returns of BAPOSGMCP using the different meta-

policies in three of the environments (one mixed, one competitive,

one cooperative). Results for all environments are available in Ap-

pendix E.

We observed that the best meta-policy varied based on the envi-

ronment, with performance benefiting from amore greedy policy in

some environments and a more uniform policy in others. In general,

there was a benefit to some level of policy mixing, given the greedy

policy has similar or lower performance to either the softmax or

uniform meta-policies across all environments. We expect this is

likely due to the reasons covered in Section 4.2. The softmax meta-

policy was the most robust, performing best or equal best across

all environments given enough simulations. It’s worth noting that

the level of mixing can be easily tuned using the 𝜏 parameter in the

softmax meta-policy. We didn’t tune this parameter at all for our

experiments and expect marginal performance gains may be seen

with tuned values. A question for future work is whether an optimal

value for 𝜏 can be inferred from the empirical payoff-matrix.

To study the benefit of using a meta-policy, as well as the ro-

bustness of BAPOSGMCP to search policy choice, we tested BA-

POSGMCP using different search policies. Specifically, for each

environment we replaced the meta-policy with each of the poli-

cies in the set Π, as well as the uniform random policy. Figure 3(d)

shows the results for the PP (two-agents) problem, which is a rep-

resentative sample (results for every environment are available in

Appendix F).

We found that using a meta-policy lead to the most consistent

results, with the meta-policy having similar or better performance

than the best fixed-policy in each environment. While BAPOS-

GMCP using the best single-policy was able to perform comparable

to when using the meta-policy, we typically observed a significant

gap between the best and worst performing policies. Interestingly,

for some environments BAPOSGMCP using the random policy had

comparable performance to the meta-policy, showing that proper

modelling of the uncertainty present in the problem plus MCTS

is able to go a long way towards scalable type-based reasoning in

many environments. The big downside of using a random policy is

that it requires performing rollouts for leaf-node evaluation which

increases search time significantly (see Appendix D).

5.7 Belief Evaluation
To better understand the adaptive capabilities of BAPOSGMCP

we looked at the evolution of beliefs throughout an episode. In

each environment we recorded the probability assigned to the true

policy of the other agent in BAPOSGMCP’s root belief at each step.

Additionally, we recorded the accuracy of BAPOSGMCP’s belief

estimate of the other agent’s action distribution at each step by

measuring the Wasserstein distance [32] between the estimated

and true action distributions. The results for the LBF, PE, and PP

environments are shown in Figure 4 (results for all environments

are in Appendix G).

We observed that for all environments, except LBF, BAPOS-

GMCP’s belief in the correct type of the other agent increased as

the episode progressed. A similar trend occurred for the action

(a) LBF (b) LBF

(c) PE (Evader) (d) PE (Evader)

(e) PP (two-agents) (f) PP (two-agents)

Figure 4: Accuracy of BAPOSGMCP’s belief by episode step.
Left column shows mean probability assigned by the belief
to the true policy of the other agent. Right column shows
Wasserstein distance between the belief’s estimated action
distribution and the true action distribution of the other
agent. Each line shows BAPOSGMCP using a different num-
ber of simulations. Shaded areas show 95% CI.

distribution accuracy, with the distance between the estimated

and true distributions decreasing over time. This indicates BAPOS-

GMCP was able to learn about the type of the other agent over time

from online interactions. Interestingly, for the LBF environment

BAPOSGMCP was unable to learn the type of the other agent yet

it was able to predict the policy of the other agent relatively well

(compared against prediction accuracy in the other environments).

This suggests that the relatively rule-based other agent policies

in the LBF environment had indistinguishable behaviour, yet BA-

POSGMCP was able to account for this with it’s belief. Another

point worth highlighting is that, on average, the type of the other

agent was never learned perfectly in any of the environments. It is

possible this is due to the limitations of our method, however, we

believe it’s far more likely due to the difficulty of correctly inferring

the type of the other agent in partially observable environments

and highlights the benefits of maintaining a belief over types for

robust performance in such settings.

As should be expected, we found roughly monotonic improve-

ment in belief accuracy as the number of simulations increased. The

exception to this was for 1000 simulations in some environments.

This is likely due to our implementation using a constant cap on

the number of rejected particles during belief reinvigoration. This

cap is more likely to be reached when using a larger number of sim-

ulations, at which point particles are propagated without rejection

leading to reduced belief accuracy. Some possible and simple fixes

to this would be to remove the cap, scale the cap with the number

of simulations, or use domain knowledge for belief reinvigoration,

and is a suggested improvement for subsequent work.

6 CONCLUSION
We presented a scalable planning method for type-based reasoning

in large partially observable, multi-agent environments. Our new

algorithm, BAPOSGMCP, accounts for partial observability of the

environment and the other agents by maintaining a belief over the

type of the other agent, the other agent’s history, and the envi-

ronment state. It alleviates the computational intractability of the

problem by using a novel multi-agent extension of MCTS combined

with a new meta-policy approach for choosing the search policy.

Detailed evaluations of BAPOSGMCP demonstrate it’s ability to

learn the other agent’s type online and achieve robust and substan-

tially improved performance in large competitive, cooperative, and

mixed environments with up to four agents and 10
14

states.

Multiple avenues for future research exist. In this work, we lim-

ited ourselves to discrete state-action-observation POSGs. Extend-

ing BAPOSGMCP to handle continuous spaces would make it more

general. Our experiments highlighted some of the limitations of

belief updates using particle filter. More efficient belief update meth-

ods would help alleviate these limitations. In this work, we proposed

a number of meta-policies and validated them empirically, however

based on prior work [37], a more principled approach likely exists.

Lastly, we limited experiments to the case where the other agents

come from the set of known types. Exploring generalization to

agents outside of this set would be a useful addition.

ACKNOWLEDGMENTS
If you wish to include any acknowledgments in your paper (e.g., to

people or funding agencies), please do so using the ‘acks’ environ-
ment. Note that the text of your acknowledgments will be omitted

if you compile your document with the ‘anonymous’ option.

REFERENCES
[1] Stefano V. Albrecht, Jacob W. Crandall, and Subramanian Ramamoorthy. 2016.

Belief and Truth in Hypothesised Behaviours. Artificial Intelligence 235 (2016),
63–94.

[2] Stefano V. Albrecht, Somchaya Liemhetcharat, and Peter Stone. 2017. Special

Issue on Multiagent Interaction without Prior Coordination: Guest Editorial.

Autonomous Agents and Multi-Agent Systems 31, 4 (2017), 765–766.
[3] Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A Game-Theoretic

Model and Best-Response Learning Method for Ad Hoc Coordination in Multia-

gent Systems. In Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-Agent Systems. 1155–1156.

[4] Stefano V. Albrecht and Subramanian Ramamoorthy. 2014. On Convergence and

Optimality of Best-Response Learning with Policy Types in Multiagent Systems.

In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence.
12–21.

[5] S. V. Albrecht and Peter Stone. 2017. Reasoning about Hypothetical Agent

Behaviours and Their Parameters. In 16th International Conference on Autonomous
Agents and Multiagent Systems 2017. International Foundation for Autonomous

Agents and Multiagent Systems, 547–555.

[6] Stefano V. Albrecht and Peter Stone. 2018. Autonomous Agents Modelling Other

Agents: A Comprehensive Survey and Open Problems. Artificial Intelligence 258
(May 2018), 66–95. https://doi.org/10.1016/j.artint.2018.01.002

[7] Christopher Amato and Frans A. Oliehoek. 2014. Scalable Planning and Learning

for Multiagent POMDPs: Extended Version. arXiv:1404.1140 [cs] (Dec. 2014).
arXiv:1404.1140 [cs]

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-Time Analysis of

the Multiarmed Bandit Problem. Machine learning 47, 2 (2002), 235–256.

[9] Samuel Barrett, Noa Agmon, Noam Hazon, Sarit Kraus, and Peter Stone. 2014.

Communicating with Unknown Teammates.. In ECAI. 45–50.
[10] Samuel Barrett and Peter Stone. 2015. Cooperating with Unknown Teammates

in Complex Domains: A Robot Soccer Case Study of Ad Hoc Teamwork. In

Twenty-Ninth AAAI Conference on Artificial Intelligence.
[11] Samuel Barrett, Peter Stone, and Sarit Kraus. 2011. Empirical Evaluation of Ad

Hoc Teamwork in the Pursuit Domain. In The 10th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2. 567–574.

[12] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.

2002. The Complexity of Decentralized Control of Markov Decision Processes.

Mathematics of OR 27, 4 (Nov. 2002), 819–840. https://doi.org/10.1287/moor.27.4.

819.297

[13] Michael Bowling and Peter McCracken. 2005. Coordination and Adaptation in

Impromptu Teams. In AAAI, Vol. 5. 53–58.
[14] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. 2020. Combining

Deep Reinforcement Learning and Search for Imperfect-Information Games.

arXiv:2007.13544 [cs] (Nov. 2020). arXiv:2007.13544 [cs]
[15] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for Heads-up No-

Limit Poker: Libratus Beats Top Professionals. Science 359, 6374 (2018), 418–424.
[16] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for Multiplayer

Poker. Science 365, 6456 (2019), 885–890.
[17] Muthukumaran Chandrasekaran, Prashant Doshi, Yifeng Zeng, and Yingke Chen.

2014. Team Behavior in Interactive Dynamic Influence Diagrams with Appli-

cations to Ad Hoc Teams. In Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems. 1559–1560.

[18] Shushman Choudhury, Jayesh K. Gupta, Peter Morales, and Mykel J. Kochender-

fer. 2022. Scalable Online Planning for Multi-Agent MDPs. Journal of Artificial
Intelligence Research 73 (2022), 821–846.

[19] Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. 2020. Shared Experi-

ence Actor-Critic for Multi-Agent Reinforcement Learning. Advances in Neural
Information Processing Systems 33 (2020), 10707–10717.

[20] Miguel A. Costa-Gomes and Vincent P. Crawford. 2006. Cognition and Behavior

in Two-Person Guessing Games: An Experimental Study. American economic
review 96, 5 (2006), 1737–1768.

[21] Rémi Coulom. 2006. Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search. In International Conference on Computers and Games. Springer,
72–83.

[22] Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. 2012. Information

Set Monte Carlo Tree Search. IEEE Transactions on Computational Intelligence
and AI in Games 4, 2 (2012), 120–143.

[23] Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. 2021. K-Level

Reasoning for Zero-Shot Coordination in Hanabi. Advances in Neural Information
Processing Systems 34 (2021).

[24] Aleksander Czechowski and Frans A. Oliehoek. 2021. Decentralized MCTS via

Learned Teammate Models. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence. 81–88.

[25] Prashant Doshi and Piotr J. Gmytrasiewicz. 2005. A Particle Filtering Based

Approach to Approximating Interactive Pomdps. In AAAI. 969–974.
[26] P. Doshi and P. J. Gmytrasiewicz. 2009. Monte Carlo Sampling Methods for

Approximating Interactive POMDPs. Journal of Artificial Intelligence Research 34

(March 2009), 297–337. https://doi.org/10.1613/jair.2630

[27] Prashant Doshi and Dennis Perez. 2008. Generalized Point Based Value Iteration

for Interactive POMDPs.. In AAAI. 63–68.
[28] Adam Eck, Maulik Shah, Prashant Doshi, and Leen-Kiat Soh. 2020. Scalable

Decision-Theoretic Planning in Open and Typed Multiagent Systems. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7127–7134.

[29] Piotr J. Gmytrasiewicz and Prashant Doshi. 2005. A Framework for Sequential

Planning in Multi-Agent Settings. Journal of Artificial Intelligence Research 24

(2005), 49–79.

[30] Arthur Guez, David Silver, and Peter Dayan. 2013. Scalable and Efficient Bayes-

adaptive Reinforcement Learning Based on Monte-Carlo Tree Search. Journal of
Artificial Intelligence Research 48 (2013), 841–883.

[31] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. 2004. Dynamic

Programming for Partially Observable Stochastic Games. In Proceedings of the
19th National Conference on Artifical Intelligence (AAAI’04). AAAI Press, San Jose,

California, 709–715.

[32] Leonid V. Kantorovich. 1960. Mathematical Methods of Organizing and Planning

Production. Management science 6, 4 (1960), 366–422.
[33] Sammie Katt, Frans A. Oliehoek, and Christopher Amato. 2017. Learning in

POMDPs with Monte Carlo Tree Search. In International Conference on Machine
Learning. PMLR, 1819–1827.

[34] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.

In European Conference on Machine Learning. Springer, 282–293.
[35] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisý.

2020. Rethinking Formal Models of Partially Observable Multiagent Decision

Making. arXiv:1906.11110 [cs] (Oct. 2020). arXiv:1906.11110 [cs]
[36] Hanna Kurniawati and Vinay Yadav. 2016. An Online POMDP Solver for Un-

certainty Planning in Dynamic Environment. In Robotics Research. Springer,
611–629.

[37] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A Unified Game-

Theoretic Approach to Multiagent Reinforcement Learning. arXiv preprint
arXiv:1711.00832 (2017). arXiv:1711.00832

[38] J. Z. Leibo, V. F. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. 2017. Multi-

Agent Reinforcement Learning in Sequential Social Dilemmas. InAAMAS, Vol. 16.
ACM, 464–473.

[39] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. 2020. Improving

Policies via Search in Cooperative Partially Observable Games. AAAI 34, 05
(April 2020), 7187–7194. https://doi.org/10.1609/aaai.v34i05.6208

[40] Adam Lerer and Alexander Peysakhovich. 2019. Learning Existing Social Con-

ventions via Observationally Augmented Self-Play. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society. 107–114.

[41] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions

for Distributed Reinforcement Learning. In International Conference on Machine
Learning. PMLR, 3053–3062.

[42] Kevin R. McKee, Joel Z. Leibo, Charlie Beattie, and Richard Everett. 2022. Quan-

tifying the Effects of Environment and Population Diversity in Multi-Agent

Reinforcement Learning. Autonomous Agents and Multi-Agent Systems 36, 1
(2022), 1–16.

[43] Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke,

Mohan Sridharan, Peter Stone, and Stefano V. Albrecht. 2022. A Survey of

Ad Hoc Teamwork: Definitions, Methods, and Open Problems. arXiv preprint
arXiv:2202.10450 (2022). arXiv:2202.10450

[44] John F. Nash. 1950. Equilibrium Points in N-Person Games. Proceedings of the
national academy of sciences 36, 1 (1950), 48–49.

[45] Alessandro Panella and Piotr Gmytrasiewicz. 2016. Bayesian Learning of Other

Agents’ Finite Controllers for Interactive POMDPs. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press, Phoenix,
Arizona, 2530–2536.

[46] Alessandro Panella and Piotr Gmytrasiewicz. 2017. Interactive POMDPs with

Finite-State Models of Other Agents. Auton Agent Multi-Agent Syst 31, 4 (2017),
861–904. https://doi.org/10.1007/s10458-016-9359-z

[47] Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. 2021. Agent

Modelling under Partial Observability for Deep Reinforcement Learning. Ad-
vances in Neural Information Processing Systems 34 (2021), 19210–19222.

[48] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Al-

brecht. 2021. Benchmarking Multi-Agent Deep Reinforcement Learning Algo-

rithms in Cooperative Tasks. In Thirty-Fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1).

[49] Christopher D. Rosin. 2011. Multi-Armed Bandits with Episode Context. Annals
of Mathematics and Artificial Intelligence 61, 3 (2011), 203–230.

[50] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

and Thore Graepel. 2020. Mastering Atari, Go, Chess and Shogi by Planning

with a Learned Model. Nature 588, 7839 (2020), 604–609.
[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017). arXiv:1707.06347

[52] Jonathon Schwartz, Ruijia Zhou, and Hanna Kurniawati. 2022. Online Planning

for Interactive-Pomdps Using Nested Monte Carlo Tree Search. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.

[53] Iris Rubi Seaman, Jan-Willem van de Meent, and David Wingate. 2018. Nested

Reasoning About Autonomous Agents Using Probabilistic Programs. arXiv
preprint arXiv:1812.01569 (2018). arXiv:1812.01569

[54] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, and Marc Lanctot. 2016. Mastering the Game of Go with Deep Neural

Networks and Tree Search. nature 529, 7587 (2016), 484–489.
[55] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore

Graepel. 2018. A General Reinforcement Learning Algorithm That Masters Chess,

Shogi, and Go through Self-Play. Science 362, 6419 (2018), 1140–1144.

https://doi.org/10.1016/j.artint.2018.01.002
https://arxiv.org/abs/1404.1140
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://arxiv.org/abs/2007.13544
https://doi.org/10.1613/jair.2630
https://arxiv.org/abs/1906.11110
https://arxiv.org/abs/1711.00832
https://doi.org/10.1609/aaai.v34i05.6208
https://arxiv.org/abs/2202.10450
https://doi.org/10.1007/s10458-016-9359-z
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1812.01569

[56] David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs.

Advances in Neural Information Processing Systems 23 (2010), 2164–2172.
[57] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch,

Darse Billings, and Chris Rayner. 2005. Bayes’ Bluff: Opponent Modelling in

Poker. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial
Intelligence. 550–558.

[58] Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. 2010. Ad

Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination. In

Twenty-Fourth AAAI Conference on Artificial Intelligence.
[59] Malcolm Strens. 2000. A Bayesian Framework for Reinforcement Learning. In

ICML, Vol. 2000. 943–950.
[60] Zachary Sunberg andMykel Kochenderfer. 2018. Online Algorithms for POMDPs

with Continuous State, Action, and Observation Spaces. Proceedings of the
International Conference on Automated Planning and Scheduling 28 (June 2018),

259–263.

[61] Ming Tan. 1993. Multi-Agent Reinforcement Learning: Independent vs. Coop-

erative Agents. In Proceedings of the Tenth International Conference on Machine

Learning. 330–337.
[62] Gerald Tesauro. 1994. TD-Gammon, a Self-Teaching Backgammon Program,

Achieves Master-Level Play. Neural computation 6, 2 (1994), 215–219.

[63] William E. Walsh, Rajarshi Das, Gerald Tesauro, and Jeffrey O. Kephart. 2002.

Analyzing Complex Strategic Interactions in Multi-Agent Systems. In AAAI-02
Workshop on Game-Theoretic and Decision-Theoretic Agents. 109–118.

[64] Michael P. Wellman. 2006. Methods for Empirical Game-Theoretic Analysis. In

AAAI. 1552–1556.
[65] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. 2011. Online Planning for Ad

Hoc Autonomous Agent Teams. In Twenty-Second International Joint Conference
on Artificial Intelligence.

[66] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. 2017. DESPOT: Online

POMDP Planning with Regularization. Journal of Artificial Intelligence Research
58 (Jan. 2017), 231–266. https://doi.org/10.1613/jair.5328

[67] Elnaz Shafipour Yourdshahi, Thomas Pinder, Gauri Dhawan, Leandro Soriano

Marcolino, and Plamen Angelov. 2018. Towards Large Scale Ad-Hoc Teamwork.

In 2018 IEEE International Conference on Agents (ICA). IEEE, 44–49.

https://doi.org/10.1613/jair.5328

A ENVIRONMENTS
In this section we describe the environment used for experiments in more detail.

Driving: A general-sum 2D grid world navigation problem requiring coordination [40, 42]. Each agent controls a vehicle and is tasked

with driving the vehicle from start to destination while avoiding crashing into other vehicles. Each agent observes their local area, speed,

and destination, and whether they’ve reached their destination or crashed. Agents receive a reward of 1 if they reach their destination and

−1 if they crash. To reduce exploration difficulty agents receive a reward of 0.05 each time they make progress towards their destination.

The exploration bonus is analogous to GPS in that it provides guidance for navigation but not for how to coordinate with other vehicles.

Episodes ended when all agents had either crashed or reached their destination, or 50 steps had passed.

Level-Based Foraging (LBF): [3, 5] is a mixed incentive environment where agents must collect food in a grid world. Each agent is assigned

a level and can only pick-up a piece of food alone if the food is of equal or lower level. For food with a higher level than the agent, the agent

must coordinate with the other agent. We use the partially-observable version of LBF used in [19, 48]. We slightly modified the environment

so that food and agents always spawn in the same locations, while their levels are still randomly generated. This simplifies the initial belief

for each agent and does not impact the cooperation-competition dynamics of the problem. Episodes ended when all food was picked-up, or

50 steps had passed.

Pursuit-Evasion (PE): An asymmetric zero-sum grid world problem involving two agents, an evader and a pursuer [52, 53]. The evader’s

goal is to reach a safe location, while the the pursuer’s aim is to spot the evader before it reaches it’s goal. The evader is considered caught if

it is observed by the pursuer. Both agents have knowledge of each others starting locations, however, only the evader has knowledge of it’s

goal location. The pursuer only knows the set of possible safe locations. Thus, this environment requires each agent to reason about the

which path the other agent will take through the dense grid environment. Each agent receives six bits of observation per step. Four bits

indicate whether there is a wall or not in each of the cardinal directions, one bit indicates whether the opponent can be seen in the agent’s

field of vision, and the final bit indicates whether the opponent can be heard within Manhattan distance two of the agent. Due to the lack of

precision of these observations, the pursuer never knows the exact position of the evader and vice versa. Similar to the Driving environment

the evader agent receives a small bonus whenever it makes progress towards the safe location, while the pursuer receives the opposite

reward. Episodes ended when the evader was captured or reached the safe location, or 100 steps had passed.

Predator-Prey (PP): A co-operative grid world problem involving multiple predator agents working together to catch prey [38, 61]. Prey

are controlled autonomously and preference movement away from any observable predators or other prey. Predators can catch prey by

being in an adjacent cell, with the number of predators required to catch a prey based on the prey strength. Both predators and prey can

observe a 5-by-5 area around themselves, namely whether each cell contains a wall, predator, or prey or is empty. Each prey capture gives all

predators a reward of 1/𝑁𝑝𝑟𝑒𝑦 . Predators start each episode from random separate locations along the edge of the grid, while prey start

together in the center of the grid. We ran experiments on two different versions of the environment, where both versions had three prey.

The two-agent version had two predators with each prey requiring two predators to capture. The four-agent version had four predators with

prey requiring three predators to capture. Both versions required coordination between agents to capture the prey. Episodes ended when all

prey were captured, or 50 steps had passed.

B FIXED POLICIES
B.1 Training
For each of the Driving, PE, and PP environments we trained a set of neural network policies using reinforcement learning. We used

different multi-agent training schemes for each environment, however the same method was used the same setting for each individual

policy. Specifically, for each individual policy we used the Rllib [41] implementation of the Proximal Policy Optimization (PPO) model-free,

policy-gradient method [51] for training. We used the same neural network architecture for all policies, namely two fully-connected layers

with 64 and 32 units, respectively, followed by a 256 unit LSTM, whose output was fed into separate fully connected output heads for the

policy and value functions. The neural network architecture and training hyperparameters are shown in Table 1. Training hyperparameters

were consistent across environments, except for some policies in the PP environment where we used experimented with different hyper

parameter values as it lead to similar performance with faster training times. All policies were trained until convergence, as indicated by

learning curve.

Hyper parameter Driving PE PP

Training steps 10,240,000

Fully Connected Network Layers [64, 32]

LSTM Cell Size 256

Learning Rate 0.0003

KL Coefficient 0.2

KL target 0.01

Batch size 2048

LSTM training sequence length 20

Entropy Bonus Cofficient 0.001

Clip param 0.3

𝛾 0.99 0.99 [0.99, 0.999]
𝐺𝐴𝐸𝜆 0.9 0.9 [0.90, 0.95]

SGD Minibatch size 256 256 [256, 512]
Num. SGD Iterations 10 10 [10, 2]

Table 1: Driving, PE, PP policy training hyperparameters.

B.2 Driving Policies
For the Driving experiments we trained a set of five K-level reasoning (KLR) policies. Policies are trained in a hierarchy, the level 𝐾 = 0

policy is trained against a uniform random policy, level 𝐾 = 1 is trained against the level 𝐾 = 0, and so on with the level 𝐾 policy trained as

a best response to the level 𝐾 − 1 policy. We trained policies synchronously using the Synchronous KLR training method [23]. Figure 5

provides a visualization of the training schema used. Figure 6 shows the pairwise performance for the Driving environment policies. Each

policy was evaluated against each other policy for 1000 episodes.

(a) Driving (b) Pursuit-Evasion (c) Predator-Prey

Figure 5: Multi-agent training schemas used for generating the fixed policies for the different environments (adapted from
[23]). For the Pursuit-Evasion environment separate policies were trained for evader (agent 0) and pursuer (agent 1) agents.

Figure 6: Payoff matrix for fixed KLR policies in the Driving environment. The left figure shows expected returns for the row
policy. The right figure shows the corresponding 95% confidence intervals.

B.3 Level-Based Foraging Policies
For the LBF environment we used the set of four heuristic policies used in prior work [5, 47]. Figure 7 shows the pairwise performance of

the four heuristic policies, generated from 1000 episodes per pairing.

Figure 7: Payoff matrix for LBF heuristic policies. The left figure shows expected returns for the row policy. The right figure
shows the corresponding 95% confidence intervals.

B.4 Pursuit Evasion Policies
For the PE experiments we trained a set of five KLR policies, similar to the Driving experiments. The only difference being that we trained

separate policies for the Evader and Pursuer at each reasoning level. Figure 5 provides a visualization of the training schema used. Separate

policies were used because the PE problem is asymmetric, with the pursuer and evader having different objectives. Figure 8 shows the

pairwise performance for the PE environment policies. Each policy was evaluated against each other policy for 1000 episodes.

B.5 Predator Prey Policies
For the PP experiments we trained a set of five independent policies using self-play. Each policy was initialized with a different seed and

trained only with itself. Figure 5 provides a visualization of the training schema used. We trained separate policies for the two-agent and

four-agent versions of the PP environment used in the experiments. Figure 9 shows the pairwise performance for set of policies in each

version of the environment, generated from 1000 episodes for each pairing. For the four-agent version we show the results from matching

the row policy with a team of three versions of the same policy (e.g. T0 is three copies of policy S0).

Figure 8: Payoff matrices for fixed policies in the PE environment. The top and bottom rows show the payoffs for the evader
and pursuer agents, respectively. In each row the left figure shows expected returns for the row policy and the right figure
shows the corresponding 95% confidence intervals.

Figure 9: Payoff matrices for policies in the PP environment. The top shows payoff for the two-agent version and the bottom
rows show the payoffs for four-agent version. In each row the left figure shows expected returns for the row policy and the
right figure shows the corresponding 95% confidence intervals. Four the four-agent version each column represents the team of
three agents consisting of three copies of the same policy (e.g. T0 is made up of three copies of policy S0).

C ACTION SELECTION STRATEGIES
Figure 10 shows results comparing different search action selection strategies for BAPOSGMCP in the Driving and LBF environments. We

compared PUCB which was used in the main paper results with two baseline strategies: uniform and UCB. Each strategy controls how

actions are chosen from decision nodes during search. Uniform action selection selects each action equally often by always selecting the

action with the lowest visit count. When using uniform action selection the action with the highest value from the root node is chosen as the

real action to use. UCB action selection uses the popular Upper Confidence Bound selection strategy for MCTS [8, 21, 34].

PUCB clearly dominates performance for both environments. This is especially true when using the value function for leaf node evaluation,

as opposed to using policy rollouts.

(a) Driving using value function. (b) Driving using rollouts. (c) LBF using rollouts.

Figure 10: Performance of BAPOSGMCP using different action selections strategies. Shaded areas show 95% confidence interval.

D LEAF NODE EVALUATION
Figure 11 shows results comparing value function and rollout based leaf node evaluations. Results are for BAPOSGMCP in the Driving

environment. Results are from running 100 episodes. For value function evaluations, we assume that we have access to the value function of

the current policy (as selected by the meta-policy). In our experiments for the Driving, PE, and PP environments policies are Actor-Critic

neural networks base policies which have both policy and value functions. The value function is used to evaluate the leaf node using

the history of the planning agent at the leaf node (as per [50, 55]). For rollout evaluations the remainder of the episode is played using

the current rollout policy (as selected by the meta-policy) and the state and other agent policies and histories contained in the current

history-policy-state particle (similar to standard POMDP based MCTS methods [56]). The discounted sum of rewards along the rolled out

trajectory is then used as a value estimate for the leaf node.

Performance in terms of episode return is comparable between the two leaf node evaluation methods. However, value function evaluation

has a significant advantage in terms of mean search time per step. This of course is due to avoiding time costly rollouts. The cost of rollouts

is further exacerbated in our experiments by the use of neural network based rollout policies that typically have relatively high sample cost

compared with simple handcrafted rollout policies such as those used for the LBF problem.

Figure 11: Comparison of leaf node evaluation methods in BAPOSGMCP. Shaded areas show 95% confidence interval. The left
figure shows mean episode return, while the right shows mean search time per real environment step.

E EVALUATION OF DIFFERENT META-POLICIES
Figure 12 shows the performance of BAPOSGMCP using the different meta-policies in each environment.

(a) Driving (b) LBF (c) PE (Evader)

(d) PE (Pursuer) (e) PP (two-agents) (f) PP (four-agents)

Figure 12: Performance of BAPOSGMCP with greedy 𝜎𝐺 , softmax 𝜎𝑆 (𝜏 = 0.25), and uniform 𝜎𝑈 meta-policies in each environ-
ment.

F EVALUATION OF DIFFERENT SEARCH POLICIES
Figure 13 compares the performance of BAPOSGMCP using a meta-policy against using random and fixed policies.

(a) Driving (b) LBF (c) PE (Evader)

(d) PE (Pursuer) (e) PP (two-agents) (f) PP (four-agents) IP

Figure 13: Comparison of BAPOSGMCP using different search policies in each environment. Each figure shows performance of
BAPOSGMCP using the best performing meta-policy, the uniform random policy, and each of the available fixed policies.

G BELIEF ACCURACY

(a) Driving (b) LBF (c) PE (Evader)

(d) PE (Pursuer) (e) PP (two-agents) (f) PP (four-agents)

Figure 14: Mean probability assigned to the true policy of the other agent in the belief of BAPOSGMCP by episode step. Each
line is BAPOSGMCP using a different number of simulations. Shaded areas show 95% confidence intervals. For the Driving, LBF,
and PE environments episodes lengths were often shorter than the max episode lengths, leading to larger confidence intervals
for later steps.

(a) Driving (b) LBF (c) PE (Evader)

(d) PE (Pursuer) (e) PP (two-agents) (f) PP (four-agents)

Figure 15: Mean per step Wasserstein distance between the estimated policy of the other agent in the belief of BAPOSGMCP
and the true policy of the other agent. Each line is BAPOSGMCP using a different number of simulations. Shaded areas show
95% confidence intervals. For the Driving, LBF, and PE environments episodes lengths were often shorter than the max episode
lengths, thus why the confidence intervals tend to grow for later steps.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Method
	4.1 Bayesian Learning of Types
	4.2 Meta-Policy
	4.3 Multi-agent MCTS

	5 Experiments
	5.1 Multi-Agent Environments
	5.2 Policies
	5.3 Baselines
	5.4 Experimental Setup
	5.5 Evaluation of Returns
	5.6 Evaluation of Meta-Policies
	5.7 Belief Evaluation

	6 Conclusion
	Acknowledgments
	References
	A Environments
	B Fixed Policies
	B.1 Training
	B.2 Driving Policies
	B.3 Level-Based Foraging Policies
	B.4 Pursuit Evasion Policies
	B.5 Predator Prey Policies

	C Action selection strategies
	D Leaf Node evaluation
	E Evaluation of different meta-policies
	F Evaluation of different search policies
	G Belief Accuracy

