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Abstract

Planning under uncertainty is critical to robotics. The Partially Observable
Markov Decision Process (POMDP) is a mathematical framework for such
planning problems. It is powerful due to its careful quantification of the non-
deterministic effects of actions and partial observability of the states. But pre-
cisely because of this, POMDP is notorious for its high computational complex-
ity and deemed impractical for robotics. However, since early 2000, POMDPs
solving capabilities have advanced tremendously, thanks to sampling-based ap-
proximate solvers. Although these solvers do not generate the optimal solution,
they can compute good POMDP solutions that significantly improve the robust-
ness of robotics systems within reasonable computational resources, thereby
making POMDPs practical for many realistic robotics problems. This paper
presents a review of POMDPs, emphasizing computational issues that have
hindered its practicality in robotics and ideas in sampling-based solvers that
have alleviated such difficulties, together with lessons learned from applying
POMDPs to physical robots.
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1. Introduction

The ability to compute reliable and robust decisions in the presence of uncertainty is essential in
robotics. Specifically, an autonomous robot must decide how to act strategically to accomplish its
tasks, despite being subject to various types of errors and disturbances affecting their actuators, sensors,
and perception, and despite the lack of information and understanding about itself and its environment.
The errors and limited information cause the effects of performing actions to be non-deterministic from
the robot’s point of view and cause the robot’s state to only be partially observable, which means the
robot never knows its exact state.

The Partially Observable Markov Decision Process (POMDP) (1, 2) is a mathematically principled
framework to model decision-making problems in the non-deterministic and partially observable sce-
narios mentioned above. The POMDP quantifies the non-deterministic effects of actions and errors
in sensors and perception stochastically. It estimates the robot’s state as probability distribution func-
tions over states, called beliefs, and computes the best actions to perform with respect to these beliefs,
rather than single states. The computed action strategies will automatically balance information gath-
ering and goal attainment. This concept is powerful: It is general and could enable robust operation
even when the robot operates near environment boundary or near the limit of the robot’s capability.

However, exactly because of its careful consideration of uncertainty, computing the exact optimal so-
lution to a POMDP problem is computationally intractable (3). In fact, not long ago, most benchmark
problems for POMDPs have less than 30 states and the best algorithms that could solve them took
many hours (4, 5), which is grossly insufficient for realistic robotics problems. As a result, POMDPs
were considered impractical for robotics and abandoned at the expense of robustness.

Nevertheless, in the past two decades, tremendous advances have been made in computing good action
strategies for POMDP problems, thanks to the sampling-based approach. Although the computed
strategies are not the optimal solution to the problems, they are often sufficient to substantially improve
robustness. Hence, these progress enable the POMDP to become practical for a variety of realistic
robotics problems.
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In this paper, we describe an overview of these advances in POMDPs. We start by describing the
POMDP problems and model in Section 2. Subsequently, we describe sampling-based methods that
have advanced the practicality of POMDPs in robotics and the computational issues these methods
alleviated. In Section 4, we present the implementation side of POMDPs in relation to robotics appli-
cations. Finally, we end with a brief discussion on the similarity of the progression of POMDPs and
motion planning, as well as the relation between POMDPs and machine learning.

2. The Problem and POMDP Formulation

The POMDP is a natural representation of sequential decision-making problems where the results of
actions are non-deterministic and the state is only partially observable. Sequential decision-making
(aka. planning) is the problem of computing action strategies for a robot to achieve good long-term
returns when actions may have long-term consequences. In such problems, the robot has some infor-
mation about the effects of actions prior to execution, though these information may not be perfect
nor complete. In other words, the robot’s understanding of the actions’ results are non-deterministic.
The robot can use the perceived observations to help infer its state. However, in partially observable
scenarios, due to errors in sensor measurements and in perception, the robot may perceive the same
observations from multiple states, causing these states to be indistinguishable and the robot’s exact
state to remain unknown.

Many robotics problems fit the above planning in non-deterministic and partially observable scenarios.
For example:
Underwater Navigation: How should an Autonomous Underwater Vehicle (AUV) navigates to a pre-

specified goal, despite not knowing the exact underwater currents affecting its motion and de-
spite substantial localization errors underwater?

Manipulation: How should a robot pick up an oil container from one location to another when it does
not know exactly how full the container is? This lack of information means a relevant property
of the problem is partially observable and the robot has uncertainty on the effect of its grasping.
For example, if the container is almost empty, it will be easily moved and perhaps fall over
when the robot tries to pick it up from the side.

Human Robot Collaboration: How to communicate effectively, so as to ensure effective collabora-
tion with human, even though the robot does not know the exact characteristics nor intentions
of the human? These variables are partially observed and due to a lack of information about
the human characteristics and intention, the reaction of the human with respect to the robot’s
actions becomes non-deterministic.

The above examples are obviously far from being exhaustive in the robotics topics nor in the problems
within each robotics topic, but hopefully they gave an indication of how diverse and common non-
deterministic and partially observed planning problems are in robotics.

The above type of planning problems can naturally be formulated as a POMDP. Formally, the POMDP
model is defined as a 6-tuple 〈S,A,O,T,Z,R〉, where:
S denotes the state space —the set of all possible states, which can include the states of the robot and

the environment.
A denotes the action space —the set of all actions the robot can perform.
O denotes the observation space —the set of all observations the robot can perceived.
T (s, a, s′) denotes the transition function, representing the non-deterministic effects of actions. It is a

conditional probability function P(s′ | s, a) representing the probability that the robot will be in
state s′ ∈ S after performing action a ∈ A at state s ∈ S. In robotics, this function is sometimes
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represented as a noisy dynamics function s′ = f (s, a, η), where s, s′ ∈ S ⊆ Rn and η ∼ N is a
noise vector sampled from noise distribution N , while f (·) denotes the system’s dynamics.

Z(s′, a, o) denotes the observation function, representing errors and noise in measurement and percep-
tion. It is a conditional probability function P(o | s′, a) that represents the observation the robot
may perceive when it is in state s′ ∈ S after performing action a ∈ A.

R denotes the immediate reward function. This function can be parameterized by a state, a pair of
state and action, or a tuple of state, action, and subsequent state.

A POMDP agent with model 〈S,A,O,T,Z,R〉 will operate as follows. At each time step, the agent
is in some state s ∈ S. However, due to partial observability, s is hidden to the agent, and instead the
agent maintains a belief b ∈ B as an estimate of its state. The notation B denotes the belief space,
which is the set of all beliefs. This set forms a simplex with |S| − 1 dimensions due to the requirement
that each belief must sum to 1. The agent infers the best action a ∈ A to execute from b (what best
means is defined in the following paragraph). Once the action is performed, the hidden state may move
to a new state s′ ∈ S. The state s′ is hidden to the agent, but the agent perceives an observation o ∈ O
that may reveal some information about s′. The possible state s′ the agent moves to and the observation
o it may perceive follows the transition T and observation functions Z, respectively. Since the state s′ is
hidden to the agent, the agent updates its estimate of the state from b to belief b′ via Bayesian inference
based on the previous estimate b, the action a it just performed, and the observation o it just perceived.
Finally, the agent receives a reward, based on the reward function R, from which the objective function,
and hence best action is derived from. This sequence forms a single step of a POMDP agent, and the
process repeats. Figure 1 illustrates this single step.

Figure 1

Illustration of a single time-step of a POMDP agent (a) and process (b).

Solving a POMDP problem modelled as 〈S,A,O,T,Z,R〉 means finding an optimal policy —that is,
a mapping π∗ : B → A from beliefs to actions that maximise the objective function. Many objective
functions have been proposed. One that is often used in robotics is the following value function, which
is based on the expected total discounted reward. This value function assumes the problem has an
infinite horizon, meaning, at each time step, the POMDP agent can still move infinitely many steps.

V∗(b) = max
a∈A


R(b, a) + γ

∑
o∈O

P(o | b, a)V∗(τ(b, a, o))

︸                             ︷︷                             ︸
J(b, a)

︸                                               ︷︷                                               ︸
Q(b, a)

1.
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where R(b, a) =
∑

s∈S R(s, a) · b(s) is the expected immediate reward, while τ(b, a, o) updates the
belief estimate b after the agent performs action a ∈ A and perceives observation o ∈ O. Suppose
b′ = τ(b, a, o), then

b′(s′) = P(s′ | o, a, b) =
P(o | s′, a, b) P(s′ | a, b)

P(o | a, b)

=
Z(s′, a, o)

∑
s′∈S T (s, a, s′) b(s)∑

s′′∈S Z(s′′, a, o)
∑

s∈S T (s, a, s′′) b(s)
2.

The probability P(o | a, b) can be computed as a normalizing factor, i.e., the denominator in eq. (2),
to ensure the belief b′ sums to one. The notation γ ∈ (0, 1) is a discount factor to ensure that the
objective function for infinite horizon problems is well defined. Finding the best action from a belief b
then involves solving an optimization of the Q-value Q(b, a) for b and computing an estimation of the
expected future total reward J(b, a).

A related objective function is the finite horizon, where the POMDP agent has a finite number of
steps to perform. In this case, the value function is non-stationary, and the expected total reward for a
problem with horizon T is V∗T , as defined below:

V∗t (b) = max
a∈A

R(b, a) + γ
∑
o∈O

P(o | b, a)V∗t−1(τ(b, a, o))

 where V∗0 (b) = max
a∈A

(R(b, a)) 3.

where V∗t (b) is the value of b when the POMDP agent can still move for t steps.

Another related and commonly used objective function in robotics is Goal-POMDP, or otherwise
known as Shortest Path POMDP. Goal-POMDP assumes the state space contains a set of goal states.
Let’s denote this set of goals as G ⊂ S. The reward function of a Goal-POMDP problem reflects the
cost of actions, and the objective is then to reach a target belief with the lowest total cost. A target
belief b is one where b(s) = 0 whenever s < G. A Goal-POMDP is equivalent to a POMDP with
expected total discounted reward (6), in the sense that one can be transformed into another without
changing the optimal policy and value function.

Throughout this paper, we will focus on POMDPs with expected total discounted reward (eq. (1)).
The optimal value function of such POMDPs can be approximated arbitrarily closely by a Piecewise
Linear Convex function (7). Furthermore, this infinite horizon objective function has a benefit that the
optimal value function, and hence the optimal policy, is stationary.

Note that the state, action, and observation spaces of a POMDP model can be discrete or continuous.
When the state and/or observation spaces are continuous, the summation in eq. (1) – eq. (3) are replaced
with integrations over the respective spaces. In this paper, we focus on discrete and finite state, action,
and observation spaces, unless otherwise stated.

2.1. Example

To make the above definition concrete, let’s take a navigation problem as an example. Suppose a robot
navigates in a GPS-denied environment (illustrated in Figure 2), discretized into uniform grid of size
d × d. Today’s POMDP solvers can compute good policy for navigation in continuous state space, but
discrete state space provides better clarity for our discussion. The robot needs to navigate to a goal
cell, entering cells that are not robot-friendly (e.g., due to obstacles, challenging terrain, etc.). The
goal-cell is equipped with a sensor, such that the robot knows exactly if and when it has entered it,
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while two beacons are located in the environment to help the robot localise itself with small errors
when it is within k cells away from the beacons.

Figure 2

An example of navigation in GPS-denied environment, with the robot starting from cell-(2,2) marked as Init and
the goal cell being in cell-(d, d) marked as Goal. The dark grey cells are non-robot friendly cells. Two beacons are
set to help the robot localise, with beacon1 in cell-(3, d) and beacon2 in cell-(d, 2). The robot can localize with
some error within k distance from a beacon (in this example, k = 1 and the cells are marked with green diagonals).
Outside these cells and the goal cell, the robot receives no observation. The probability vector b is a belief
representation for this problem.

In this example, the robot can be represented as a POMDP agent, defined as 〈S,A,O,T,Z,R〉 where:

S: Robot’s location, which is the set {cell-(1, 1), cell-(1, 2), cell-(1, d), . . . , cell-(d, d)}.

A: In this example, we take the simplest case of moving 1 cell in 4 direction,
{North, S outh, East,West}.

O: In this particular example, the observation space is a joint product between the distance to beacon1
and beacon2, {(n.a. from beacon1, n.a. from beacon2), (n.a. from beacon1, in cell containing
beacon2), (n.a. from beacon1, within 1 cell from beacon2), . . . , (within k cells from beacon1,
within k cells from beacon2), in goal cell}. If the goal cell sensor is not perfect, then the
observation space should be a joint product between the distance to both beacons as well as the
goal-cell observation.

T (s, a, s′): A conditional probability function representing uncertainty in the effect of the robot’s
movement, e.g.,

• P(s′ = cell-(2, 3) | s = cell-(2, 2), a = North) = 0.8, P(s′ = cell-(3, 3) | s =

cell-(2, 2), a = North) = 0.1, and P(s′ = cell-(1, 3) | s = cell-(2, 2), a = North) = 0.1

• P(s′ = cell-(d, d) | s = cell-(d, d), a = ∗) = 1 for any action taken (denoted as ∗) to
indicate the goal state (cell-(d, d)) is an absorbing state

We can represent this transition function as four probability matrices of size d2×d2, where each
matrix represent the state transition for each action.

Z(s′, a, o): A conditional probability function representing sensing errors, e.g., P(o =

(n.a. from beacon1, within 1 cell from beacon2) | s′ = cell-(d-1, 2), a = North) = 0.8 and
P(o = (n.a. from beacon1, within 0 cell from beacon2) | s′ = cell-(d-1, 2), a = North) = 0.2.
Similar to the transition function, the observation function can be represented as four probabil-
ity matrices, where each matrix represent the action the robot has just performed. However, the
size of each matrix matrix is |S| × |O|.

R: A real-valued function indicating the desirability of being at a particular state and the cost of
movement, e.g., R(s = cell-(2, 2), a = North) = R(s = cell-(2, 2), a = S outh) = R(s =

cell-(2, 2), a = East) = R(s = cell-(2, 2), a = West) = movementCost = −1, while the reward
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for being in a non-robot friendly cell, such as R(s = cell-(4, 2), a = ∗) = −10, and the reward
at the goal state R(s = cell-(d, d), a = ∗) = 10 for any action.

Note that many of today’s POMDP solvers can work with generative models of transition, observation,
and reward functions, which means the probabilities and reward functions do not need to be specified
as explicitly as above.

Now, notice that due to the motion uncertainty and errors in sensing, the robot’s position are generally
not known exactly. To estimate the robot’s position, POMDPs use beliefs, which in this example are
probability distributions over the grid-cells and indicate the possible location of the robot. The belief
space for this problem is a d2 − 1 dimensional simplex, embedded in Rd2

. For computation, each
belief is generally represented as a probability vector of size d2 with each element representing the
probability the robot is at a particular cell. At each time step, the robot maintains a belief estimate and
updates it based on the the action it performed and the observation it perceived.

Finding a policy that satisfies the infinite horizon value function as described in eq. (1) means that
although the robot can take as many steps as it likes to navigate from the initial to the goal state, but
reaching the goal state earlier will provides higher reward because the discount is less.

3. Sampling-Based Approximate POMDP Solvers

Finding the optimal solution to a POMDP problem is PSPACE-hard (3). Different sub-classes of
POMDPs have slightly different hardness results, though most are still hard for classes above P (8,
9). Note, however, that planning under uncertainty in robotics is known to be a hard problem. For
instance, motion planning for a 3D point robot with uncertainty in control and localization is PSPACE-
hard (10), and if this robot is compliant, in the sense that when the robot is commanded to move
through an obstacle, it complies with the obstacles’ geometry instead of forcing itself to go through
an obstacle (11), the problem is NEXP-hard (11). These results indicate that in general, the robotics
problems of planning in non-deterministic and partially observable scenarios are computationally hard,
even if they are not formulated as POMDPs.

Many methods to find the optimal policy to POMDP problems have been proposed. A survey of such
methods are available in (5). However, the high computational complexity of these methods made
them impractical for many realistic robotics problems.

A major breakthrough for POMDPs’ applications in robotics comes when the sampling-based approxi-
mate POMDP solver (12) demonstrate that it can compute good policies for a problem with 870 states,
in contrast to problems with under 30 states, which was the majority of the benchmark at the time.
In this paper, we focus on the sampling-based approach for computing good POMDP policies and
describe details of some of the methods under this approach in Section 3.1–Section 3.5. Now, let’s
first discuss an overview of the approach.

Sampling-based approximate POMDP solvers relax the optimality requirement to approximate opti-
mality and restricts the problem only to scenarios where the POMDP agent starts from a given initial
belief (let’s denote this belief as b0). Key to the approach is it samples a set of representative beliefs
and computes the best action to perform only from the set of sampled beliefs, rather than the entire
beliefs, thereby substantially reducing the complexity of finding good POMDP policies. Which set
would be sufficiently representative and how difficult would it be to find such a set have been explored
in (13), utilising the notion of set cover.
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Many methods under the above mentioned approach have been proposed. However, they can in general
be abstracted into the program skeleton in Algorithm 1. These methods iteratively sample a set of
beliefs and estimate the values of these sampled beliefs until stopping criteria are satisfied.

Algorithm 1 A typical program skeleton for sampling-based POMDP solvers
1: Initialize policy π and a set of sampled beliefs B

{Generally, B is initialised to contain only a single belief (e.g., the initial belief b0)}
2: repeat
3: Sample a (set of) beliefs {Some methods sample histories (a history is a sequence of action–

observation tuples) rather than beliefs. In POMDPs, beliefs provide sufficient statistics of the
entire history (14), and therefore the two provide equivalent information}

4: Estimate the values of the sampled beliefs
{Generally, via a combination of heuristics and update / backup operation}

5: Update π {In most methods, this step is a byproduct of the previous step}
6: until Stopping criteria is satisfied

Figure 3

Illustration of belief tree T . Circles represent beliefs.

A variety of sampling strategies have been proposed and are often critical to the performance of the
method. Recall that sampling-based approach assumes the POMDP agent starts from a given initial
belief b0. This assumption implies that sampling beliefs from the set of beliefs reachable from b0

(denoted as R (b0)) is sufficient. Therefore, the set of sampled beliefs can be represented as a belief
tree, denoted as T and illustrated in Figure 3. This tree is akin to an AND-OR tree, where the nodes of
T represent sampled beliefs, with the root representing b0. The OR-edges are labelled by the actions
they represent and referred to as action-edges, while the AND-edges are labelled by the observations
they represent and referred to as observation-edges. For writing compactness, we use the same notation
for the node and the belief it represents, and for the edges and the actions/observations the edges
represent. A node b′ is a child of b, connected by an action edge labelled a ∈ A and an observation
edge labelled o ∈ O in T , whenever b′ = τ(b, a, o). Sampling a belief is then equivalent to selecting
a node b of T to expand, together with an action a ∈ A and an observation o ∈ O to expand the
node b. The newly sampled belief is computed as b′ = τ(b, a, o), which is the belief reached after the
agent with belief b performs action a and perceives observation o. Hence, the different strategies for
sampling beliefs can simply be viewed as different strategies to construct and expand T .

Similarly, multiple methods have been proposed to estimate the values of the sampled beliefs. Despite
the variety, they all are based on the observation that for a node b of the belief tree T , each path
from b to a leaf node in T is a possible future the agent may encounter. Therefore, to estimate the
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expected total future reward (aka., the value) of b, the value estimates of the descendants are back-
propagated (often called backup) to b—that is, V̂(b) = maxa∈EA(b)

(
R(b, a) + γ

∑
o∈EO(b,a) V̂(b′b,a,o)

)
,

where EA(b) ⊆ A is the action-edges of b, EO(b, a) ⊆ O is the observation-edges after following the
edge a ∈ EA(b) from the node b, and b′b,a,o is the node child of b via action-edge a ∈ EA(b) and
observation-edge o ∈ EO(b, a). This backup operation is applied iteratively from the leaves of T to the
root node, so as to improve the estimated Q-values of performing different actions from the nodes of
T , which in turn improves identifying the best action to perform from the sampled beliefs, and hence
the policy π. As indicated in Algorithm 1, this process of belief sampling and improvement of value
estimate is repeated until stopping criteria are satisfied.

Most sampling-based approximate POMDP solvers are anytime, which means they can return a solu-
tion when stopped at any time, though of course there is a trade-off between the quality of the solution
and the time the method has run. Therefore, the stopping criteria for this approach to solving POMDPs
is often set to be the available planning time. Some methods (15, 16, 17) compute upper and lower
bound estimates of the value functions, and hence the stopping criteria can be set to be when the differ-
ence between the upper and lower bounds for the initial belief b0 is less than a pre-specified threshold.
However, for practical purposes, for most realistic robotics problems, even methods that compute these
upper and lower bounds often stop before the desired threshold gap is reached.

Many sampling-based approximate POMDP solvers can be broadly divided into offline and online.
Offline solvers compute an approximately optimal POMDP policy π prior to execution. During exe-
cution, the agent only needs to estimate its current belief and execute the action π(b). Online solver,
on the other hand, interleaves policy computation and execution: At each step, prior to execution, the
solver will compute the good action a ∈ A to perform from the current belief b. Once the action a is
performed, the agent perceives an observation, updates its belief, and the process repeats.

Regardless of offline or online, these sampling-based methods aim to alleviate one or more of the
following difficulties, which is crucial to enable POMDPs to become practical in robotics.

1. Large state space
2. Long planning horizon
3. Large observation space
4. Large action space
5. Complex transition dynamics

Among these issues, large state space and long planning horizon are two most discussed issues to
date, often referred to as the curse of dimensionality and the curse of history, respectively. However,
other issues become equally important when applying POMDPs to realistic robotics problems. In fact,
the difficulty of solving a POMDP problem is influenced by a combination of problem characteristics
related to the above issues, together with additional problem characteristics, such as the sparsity of the
transition and observation functions. The work in (13) derives a criteria that captures these combined
problem characteristics to identify how difficult different POMDP problems are for sampling-based
methods, though this derived criteria is not always easy to compute.

In the next subsections, we describe the above issues in finding good POMDP policies, together with
the sampling-based methods that have been proposed to explicitly alleviate them. Although the meth-
ods presented are not exhaustive, but we hope they provide some insights on the ideas that have sig-
nificantly improve the practicality of POMDPs in robotics.
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3.1. Large State Space

This issue is known as the curse of dimensionality: A POMDP solver must reason in the belief space,
which is an (n − 1) dimensional continuous space, where n is the size of the state space. Key to
sampling-based methods is that they restrict estimating the value function only on a set of representa-
tive beliefs, selected in an inexpensive manner via sampling. They relax the optimality requirement to
substantially improve the scalability of POMDP solvers, with large state space being one of the first
issues these solvers try to address. Below are some of the offline and online sampling-based methods
that directly try to address the issue of large state space.

Offline Methods

Point-Based Value Iteration (PBVI) (12) was the first approximate POMDP solver that demonstrated
good performance on problems with hundreds of states, i.e., an 870 states Tag (target finding) problem,
albeit taking ∼50 hours.

PBVI samples beliefs from the set R (b0) of beliefs reachable from a given initial belief b0 that are far
from the already sampled beliefs. Specifically, given a set of sampled beliefs B ⊂ B, PBVI expands
the set by performing a single-step forward simulation for each pair of belief b ∈ B and action a ∈ A.
Note that naively, this step will generate |O| many beliefs for each belief and action pair. PBVI keeps
only one of the resulting beliefs for each b ∈ B as the newly sampled belief and add it to B. The belief
kept is the one farthest away from any belief already in B based on L1 metric.

Figure 4

An illustration of Γ = {α1, α2, α3} with three α-vectors. The X-axis represents beliefs, the Y-axis represents the
values of the beliefs. Each linear function is represented by its gradient, which in this case is αi ∈ Γ where
i ∈ [1, 3]. The estimated optimal value function V̂∗(b) represented by Γ is the upper envelope of the three linear
functions (marked as the thick red line).

Now, recall that the optimal value function eq. (1) can be approximated arbitrarily closely by a Piece-
wise Linear Convex (PWLC) function, as illustrated in Figure 4. PBVI utilises this characteristics by
representing the estimated value function and policy using α-vectors. This representation maintains a
finite set of α-vectors, denoted as Γ, where each α-vector represents the gradient of a linear function
component of the PWLC value estimate. Therefore, given Γ, the estimated optimal value function can
be computed as V̂∗(b) = maxα∈Γ α · b, where α · b represents the inner product between the two
vectors, whose sizes are the same as the number of states in S.

The question is then how does the set Γ relate to a policy. Intuitively, each α ∈ Γ corresponds to a
policy tree Tπα , where each node is associated with an action in A and each edge is associated with
an observation in O. The value α(s) is then the expected total reward of starting from state s ∈ S,
executing the action associated with the root of Tπα , traversing down the path in Tπα based on the
observation perceived, and executing the associated actions at each node of Tπα . Each α ∈ Γ is then
associated with the action at the root of the policy tree Tπα . When a vector α ∈ Γ maximizes V∗(b), the
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policy maps the belief b to the action a ∈ A that is associated with α. More details about α-vectors
representation of a POMDP policy are available in (4).

Point-based backup is used by PBVI to estimate the value function (eq. (1)). This backup operation
computes the value function (eq. (1)) only at a finite set of sampled beliefs. It maintains a single α-
vector for each sampled belief. Given an existing policy Γ and a newly sampled belief b, the new vector
α that corresponds to b is constructed by assigning αa(s) = R(s, a) and computing α = arg maxa∈A αb,a·

b, where αb,a = αa +
∑

o∈O arg maxα∈Γ α · τ(b, a, o). Finally, α is added to Γ.

The idea of applying backup operation on only a finite set of beliefs have been proposed since the
early work (18) and multiple subsequent works (4, 19). However, to ensure optimality, these methods
select the set of beliefs systematically, which is expensive. The work in (20) introduces Point-based
Dynamic Programming Update with backup operation that is very similar to the backup operation of
PBVI. It selects beliefs based on some heuristics, which is much faster than the systematic selection
proposed in (4, 18, 19). However, they interleave point-based backup with the much more expensive
standard dynamic programming backup, to ensure optimality of the solution. By relaxing the optimal-
ity requirements, PBVI performs only point-based backup and replaces the expensive belief selection
with inexpensive belief sampling, resulting in significant scaling up of POMDP solving capabilities.

Another sampling-based method, Perseus (21), separates belief sampling from backup operation, in
the sense that backup is not performed to all sampled beliefs. Perseus uses α-vectors to represent the
value function and policy and uses point-based backup too. However, by performing backup operation
only on a subset of the sampled beliefs, it generates a smaller set of α-vectors, and hence reduces the
memory requirements.

Later offline methods substantially improve the performance of PBVI and Persues further. For in-
stance, Heuristic Search Value Iteration (HSVI) (15), and specifically HSVI2 (16), took 2 hours to
generate a policy for Tag that has better quality than the policy generated by PBVI after 50 hours.
Whilst, Successive Approximations of the Reachable Space under Optimal Policies (SARSOP) (17)
generates a better policy for Tag than the one generated by HSVI2 with only 6 seconds computation
time. Since then, HSVI2 and SARSOP have been demonstrated to generate good policies for prob-
lems with over 15K states and 1K observations, while SARSOP has also been shown to generate good
policies for RockSample(10,10) benchmark (15), which has over 100K states (22). Below, we present
an overview of both HSVI2 and SARSOP, highlighting their strategies for sampling beliefs.

HSVI2 uses α-vectors policy representation and point-based backup, but differ from PBVI in its sam-
pling strategy. HSVI2 maintains a lower and upper bound estimates of the value function, where the
upper bound is used to guide sampling and is initialized with the value function of the fully observable
(i.e., the Markov Decision Process (MDP)) simplification of the POMDP problem. This upper bound
is represented as a set of points U ⊂ B × R and computed using sawtooth approximation (14). The
lower bound is the current policy and is represented as a set Γ of α-vectors. Each sampled belief b ∈ B
is associated with a lower and upper bound, denoted as V(b) and V(b), where V(b) is associated with
a vector α ∈ Γ and V(b) is associated with a point u ∈ U.

HSVI2 maintains the set of sampled beliefs in a belief tree, denoted as T , where the nodes represent
beliefs and an edge labelled with a pair of action–observation a–o from b to b′ means there is an action
a ∈ A and an observation o ∈ O, such that b′ = τ(b, a, o). We will use the same notation for a node
and the belief it represents. The root of T represents the initial belief b0. HSVI2 interleaves belief
sampling and backup until the gap between the upper and lower bound of b0 is sufficiently small —that
is, |V(b0) − V(b0)| ≤ ε for a small threshold ε. To sample beliefs, HSVI2 performs multiple sequences
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of forward simulations, starting from b0 and following a path down the tree T . Given a belief b, a
single-step forward simulation selects the action with the best upper bound a = arg maxa∈A Q(b, a)
and observation with the highest excess uncertainty o = arg maxo∈O |V(b0) − V(b0)| − γε−t, where γ is
the discount factor and t is the depth of node b′ in T . The belief b′ = τ(b, a, o) is then set as the child
node of b in T via an edge labelled a–o. This single-step forward simulation process is repeated down
the tree until the gap between the upper and lower bound of the newly added belief contribute less than
the threshold ε to such a gap at b0.

Now, SARSOP uses α-vectors policy representation, point-based backup, maintains upper and lower
bounds estimates, and represents the set of sampled beliefs B as a belief tree T too. However, SAR-
SOP explicitly aims to sample from the set of beliefs R∗(b0) reachable from b0 under the optimal
policy. Although sampling from the set of beliefs R reachable from b0 (as is PBVI and HSVI2) has
significantly improved the scalability of POMDP solving, sampling useful beliefs —that is beliefs in
or around R∗(b0)— becomes increasingly harder to sample for deeper levels of the belief tree because
the size of R increases much faster than that of R∗.

Of course, R∗ is not known a priori, as otherwise we would have found the optimal policy. Therefore,
SARSOP interleaves predicting the optimal value function with belief sampling. The prediction step
uses a simple learning mechanism, where the belief space is discretized into bins based on features of
the beliefs (in this case, the initial upper bound and entropy). The predicted value of a new belief b
in T is then the average of the values of the sampled beliefs that lie in the same bin as b. If the bin
is empty, the predicted value is set to be the upper bound. If the predicted value of b is higher than
a target value, which indicates a better estimate of V(b) may improve V(b0), SARSOP proceeds to
expand b using single-step forward simulation similar to the one used in HSVI2. The target value at b
is the lower bound of the root V(b0) that has been propagated down from b0 to b in the tree T .

Furthermore, since value estimate and belief sampling are interleaved, beliefs in B that have been
sampled early in the process may be based on a poor estimate of the value function. To keep B small
and as close as possible to the set R∗(b0), SARSOP prunes branches of T that are provably sub-optimal
—that is, when Q(b, a) < Q(b, a′) for a node b in T and a, a′ ∈ A, all descendants of b via the edges
labelled a–*, where * is any observation o ∈ O, are pruned. Furthermore, SARSOP prunes a vector
α ∈ Γ whenever it is δ-dominated by another vector in Γ at all points in B. The vector α is δ-dominated
at belief b ∈ B whenever α · b′ < α′ · b′ for all beliefs b′ ∈ B that are δ distance from b.

We hope the relatively detailed description of the three solvers above illustrates how substantial im-
provement in the scalability of POMDP solving can be achieved by altering only how beliefs are
sampled, indicating the importance of this component.

The solvers described above relies on Value Iteration. Sampling-based approach has also been applied
to Policy Iteration quite early on in Point-Based Policy Iteration (PBPI) (23). This methods represents
policy explicitly as a Finite State Controller (FSC) together with the value function, as represented by
the set of α-vectors. PBPI replaces the exact policy improvement step of the Policy Iteration method
in (24) with the point-based backup used in PBVI together with PBVI’s belief sampling strategy.

All of the above solvers assume that the state space, and also the action and observation spaces, are
finite and discrete. Work have been proposed to extend them to continuous spaces. Many work in this
extension focus on the policy representation. For instance, (25) proposes a point representation. Here,
the value function is represented by a set of beliefs B along with their estimated Q-values. Given a new
belief b, the Q-value for b and each action inA can be computed as an average of the Q-values for the
particular action at b’s k-nearest beliefs in B, where distance is computed using KL-divergence. The
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method in (26) extends point-based methods to find good policies for POMDPs with continuous state
space by replacing the value function representation α-vectors with α-functions, and using Gaussian
mixture to represent the belief, transition, and observation functions. Monte Carlo Value Iteration
(MCVI) (27) proposes a policy graph representation, where each node v in the policy graph represents
an action and is associated with an α-function, where αv(s) is the expected total reward of executing
the policy graph when the agent starts at state s and execution starts by executing the action at node
v. Another line of work, Guided Cluster Sampling (GCS) (28), represents the policy using either point
representation (25) or policy graph (27), but focuses on the belief sampling strategy to alleviate the
difficulty of sampling representative beliefs when the state space of the POMDP problem has many
continuous state variables. We will see in the next subsection that online methods representation that
no longer requires global value function representation, such as α-functions, makes it easier to scale-up
solving capabilities to problems with continuous state spaces.

Online Methods

Online methods further improve the scalability of computing good POMDP policies by focusing to
compute only the best action to perform from the current belief, rather than a policy for R(b0) or
R∗(b0). The best action to perform is computed right before execution, and therefore time to compute
them is in general very limited. However, by focusing on only the current belief, online methods have
much lower memory requirements compared to offline methods, which is a major hindrance for further
scalability of offline methods.

Moreover, compared to offline methods, most online methods take a different approach for belief
sampling. They construct the belief tree T by sampling sequences of states–action–observation, and
cluster the set of states reached via the same sequence of action–observation together to form the set
of particles representing the same belief. The exact details of this sampling are different for different
online methods, and some of them are discussed in this section.

RTDP-Bel (29) is one of the first online sampling-based methods for solving POMDPs approximately.
It is designed for Goal-POMDP. However, the method presented in (6) can transform any discounted
POMDP to Goal-POMDP. RTDP-Bel maintains a hashtable of discretized estimated values of the
beliefs. Given the current belief b ∈ B, RTDP-Bel performs a one-step forward simulation for each pair
of b–a, where a ∈ A, and uses a heuristics to estimate the expected total future reward. Specifically,
for each b–a pair, it samples a state s from b, a subsequent state s′ based on T (s, a, s′), and an
observation o based on Z (s′, a, o). It then computes Q(b, a) = R(b, a) +

∑
o∈O P(o | b, a)V(b′) where

b′ = τ(b, a, o). The value V(b′) is computed using a heuristics or based on the values of the beliefs
within the same bin as b′ in the hashtable, if the bin is not empty. Finally, RTDP-Bel selects the
action a′ = arg maxa∈A Q(b, a) to execute and updates V(b) = Q(b, a′) and the hashtable of estimated
value of sampled beliefs. The work in (6) demonstrated that RTDP-Bel is comparable to PBVI and
HSVI2 for larger benchmark problems, such as Tag and Rock-Sample(7,8) (15). A recent work (30)
have extended this method to use particle representation and multiple heuristics to guide sampling, and
further demonstrate the capability of this line of work.

Another major line of work in online methods adopt the forward search idea of RTDP-Bel, but uses the
Monte Carlo Tree Search (MCTS) (31) mechanism, which reduces reliance on heuristics. Furthermore,
most online methods introduced below and subsequently rely on particle representation of beliefs and
particle filter to update the beliefs, thereby making these solvers scalable for POMDPs with very large
and even continuous state spaces.

The Partially Observable Monte Carlo (POMCP) (32) extends the Monte Carlo Tree Search (MCTS),
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and specifically the Upper Confidence bounds for Trees (UCT) (33) to partially observable domain.
UCT applies a multi-arm bandit method, called Upper Confidence Bound (UCB) (34), for action se-
lection in MCTS. POMCP does not require an explicit transition, observation, and reward functions,
rather it uses a generative model G(s, a), which maps a pair of state s ∈ S and action a ∈ A to a tuple
(s′, o, r), where s′ ∼ T (s, a, S ′), o ∼ Z(s′, a,O), and r is the reward for performing a from s.

POMCP maintains a tree T , where the root node corresponds to the current belief bc. Each node of
T represents a belief b(h) associated with its history (denoted as h), which is the sequence of action–
observation pairs h = (a0, o0, a1, o1, · · · , ak, ok) where b = τ(· · · (τ(τ(bc, a0, o0), a1, o1) · · ·), ak, ok). The
history associated with the root node is an empty sequence. Furthermore, each node maintains statis-
tical information to help guide future sampling. We will refer to nodes of T and the beliefs associated
with them interchangeably. The belief b(h) is represented as a set of particles. Note, however that the
belief update is only performed during execution, and not during planning, as detailed below.

To find the best action to perform from the current belief bc, POMCP constructs the tree T with bc

as the root node and performs many forward simulations from the root node. To perform a forward
simulation form bc, POMCP samples a state sc from bc and uses the sampled state to guide sampling.
To sample subsequent beliefs, given a node b(h), that is associated with history h, and a state s ∈
support(b(h)), POMCP performs a forward simulation from b(h) by selecting an action a based on

UCB1 (34), i.e., a = arg maxa∈A V(ha) + c
√

N
(
h
)

N
(
h,a

) where N(h) is the number of times the node

has been visited, N(h, a) is the number of times the action a has been applied to node b, and c is a
constant to balance exploitation and exploration. The value V(h, a) is an estimate of Q(b(h), a), which
is computed as an average of the total discounted reward of multiple forward simulations. Now, let
(s′, o, r) = G(s, a), then h′ = append(h, (a, o)) and s′ is added to the particles set that represents the
belief b′(h′) associated with h′. If h′ has been visited before, the above forward simulation process is
repeated from the node b′(h′) and sampled state s′. Otherwise, a new child of b is formed to correspond
to the belief b′(h′) and history h′. The value V(h′) of this new leaf node is estimated by computing the
total discounted reward following a pre-defined policy, often called as the rollout policy. The rollout
policy can be replaced with a heuristic to estimate V(h′). A good estimate or rollout policy can help
compensate for a lack of scalability in the planning horizon. Forward simulation is then restarted from
the root node. Once the planning time for the step is over, the best action a from bc is executed, an
observation o is perceived, and the robot’s belief is updated to b′′ = τ(bc, a, o) via particle filter. The
tree T is reset, b′′ is set as the root node of T , and the process repeats.

Another method is Determinized Sparse Partially Observable Tree (DESPOT) (35). DESPOT con-
structs the belief tree and uses Monte Carlo sampling too, but uses a fixed number of scenarios (say
K) to sample the beliefs. DESPOT expands every action, but uses the fixed number of scenarios to
sample the observations during forward simulation. This strategy is akin to hindsight optimisation and
generates a sparsely sampled belief tree, with (|A|DK) many nodes for a constant K for any depth D
of the tree. As a result, DESPOT can generally perform better than POMCP when the action space is
relatively small but the observation space is large.

Another method, the Adaptive Belief Tree (ABT) (36), uses MCTS similar to POMCP too, but modi-
fies POMCP in two areas. First, ABT performs backup operation along a path of T from a leaf node to
the root, after each forward simulation down the tree is concluded (i.e., a new leaf node is added). This
backup operation helps improve the estimated value function used for action selection in subsequent
forward simulations. Second, ABT reuses previously built trees and estimated values of nearby beliefs
to help improve estimating value function of newly added tree. These two modifications help ABT to
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generate good strategies much faster than POMCP when good actions from nearby beliefs are similar,
which is common in robotics problems (36, 37). Moreover, the approach of reusing planning results
from previous steps allows ABT to generate good solutions to POMDP problems with dynamically
changing models, especially when changes happen in a gradual manner.

3.2. Long Planning Horizon

This issue is often known as the curse of history. To compute good long-term return, a POMDP solver
performs lookahead for k number of steps to consider future consequences of its action selection.
However, in general, the size of the set of possible future consequences increases exponentially with
the number of lookahead steps k.

Most methods discussed in Section 3.1 also claim to have alleviated the problem of long planning
horizon. This is true because by estimating value function only for a small subset of the reachable
space R(b0) and even reachable space under an optimal policy R∗(b0), computational resources can be
reallocated to perform longer look-ahead, which in turn alleviate the long planning horizon issues.

However, the above strategies are often not sufficient for many robotics problems, where the required
look-ahead can easily be 30 steps and more. Many methods have been proposed to directly allevi-
ate these issues. They generally construct a more abstract action, and sample the belief space using
this abstract action rather than the primitive single-step action. As a result, they reduce the effective
planning horizon of the problem. Different methods to construct abstract actions have been proposed.
Most (38, 39, 40) use macro-actions –that is, temporally extended sequences of actions where actions
or sub-policy are run until some termination conditions are met. For example, the work in (40) con-
structs Partially Observable Semi-Markov Decision Processes (POSMDPs) to achieve sub-goals, and
use these policies as macro-actions to offline solvers. Whilst, the work in (39) proposes macro-actions
to reach subgoals in online solvers. These methods require sub-goals or termination conditions to be
hand-designed to generate good problem decomposition.

Obviously, automatic generation of sub-problems are preferred. The work in (41) develops such an
automatic generation mechanism, but for open loop policies for sampling beliefs, rather than macro
actions. It sample milestones in the state space, biasing sampling towards states with high reward and
high probability of generating useful observations. Sequences of actions to move from one milestone
to another, assuming deterministic actions, become the actions used to guide sampling in the belief
space. The optimality of the POMDP policy found depends on the density of the state and belief
space sampling. Another method (42) restricts beliefs to be Gaussian and uses LQG (43) as macro-
actions for an extension of the Probabilistic Roadmap (44) to belief space. Recently, (45) successfully
constructs macro-actions for general POMDP solving automatically, based on the value of informa-
tion. Specifically, it constructs macro-actions from sequences of open-loop policies with low value of
information. It provides bounded regret on the quality of the policy generated by these macro actions.

3.3. Large Observation Space

Robotics problems often have rich and large (or even continuous) observation spaces, such as a com-
bination of laser readings, joint torques reading, RGB images, etc.. Naive uniform discretization of
such an observation space often results in too fine or too coarse a discretization. Overly fine discretiza-
tion causes an unnecessarily large observation space, which slows down computation of good policies,
while overly coarse discretization results in an effective observation space that cannot differentiate
observations that induce different decisions.
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Work have been proposed to better discretize continuous observation space (46) based on features
derived from the value function and the associated best actions. Another work (47) proposes an exten-
sion of the policy graph representation (27) and combines it with a classification mechanism based on
estimates of the value functions to identify which observations can be grouped together. Both of these
methods are designed for offline methods.

For online methods, POMCPOW (48) uses the Double Progressive Widening to incrementally increase
the set of observations to be considered. This strategy essentially discretizes the observation space
incrementally based on the sampled observations. Although built on top of POMCP, POMCPOW
diverges slightly, in the sense that it requires the use of weighted particles and an explicit observation
function, rather than the generative model alone.

A more recent online method to alleviate the issue of continuous observation space is Lazy Belief
Extraction for Continuous Observation POMDPs (LABECOP) (49), which avoids any form of dis-
cretization of the observation space. It maintains a set of sampled episodes, which is sequences of
state–action–observation–reward quadruples, but postpone belief assignment until execution. During
execution, LABECOP reweights the episodes to infer a belief based on the perceived observation, the
action it just performed, and its current belief estimate, using a mechanism akin to particle filter. Fi-
nally, it estimates the Q-values of the actions based on the weighted average discounted total reward
of appropriate components of the episodes.

3.4. Large Action Space

The solvers discussed above have significantly increased the scalability of POMDPs. However, most
of them can only perform well for problems with a small discrete action space (i.e., |A| ≤ 100). To
find the best action to perform, a POMDP solver must solve an optimization problem (eq. (1)) while
estimating the Q-values of the actions, which in itself is expensive to compute. Sampling has been
used to improve the speed of estimating Q-values, but most of the above solvers finds the best action
naively by enumerating all actions. As a result, finding good POMDP policies becomes prohibitively
expensive for problems with continuous or large discrete action space.

Perseus (21) is an offline sampling-based approximate POMDP solvers that have been extended to
problems with continuous action space. It replaces maximization over all actions with sampled max
operator, where maximization is computed over a random subset of the action space. GCS (28) is
another offline solver for continuous action space. It performs maximization over only a subset of the
action space too, but it uses geometric information from the robot operating environment to generate
sequences of action space where optimization will be performed. The idea of sampling actions to
alleviate problems with continuous action space have been proposed for tree-based solvers too in (50),
albeit applied to the fully observable POMDP, i.e., MDP problems.

For POMDPs, an early work that extended tree search based solvers to problems with continuous action
space is GPS-ABT (51). Due to the cost of estimating Q-values, and not to mention their gradient,
GPS-ABT proposes to use the simplest non-gradient based optimization method, Generalized Pattern
Search. The work also proposes an efficient data structure to efficiently keep track and reuse partially
estimated Q-values of different pairs of belief–action. Despite using a simple optimization method,
GPS-ABT is shown to converge to the optimal solution in probability, whenever the Q-value function
is bounded and the gradient of the Q-value function is Lipschitz with respect to the action space.
However, this method does not scale well for problems with more than 4-dimensional continuous
action space. The work in (48) are also designed for handling continuous action space problems.
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However, they have only been demonstrated for problems with 1-dimensional continuous action space.
Another approach is to use Bayesian optimization (52, 53) for action selection, with Gaussian Process
being used to represent beliefs and the estimated Q-value functions. However, they have only been
demonstrated in problems with low (< 4) dimensional action space.

Another line of work (54) common to robotics, is to assume linear dynamics and that beliefs are
Gaussian distributed. These assumptions allow one to apply LQG for solving, which has been demon-
strated to show good performance on a 6-DOFs robot arm. Of course linearization does not always
help. When and where linearization helps were explored in (55).

Another line of work (56) focuses on the problem of large discrete action space, rather than contin-
uous action space. Problems with large discrete action space are sometimes harder than those with
continuous action space because the first lack natural metric that can be used as heuristics to identify
how close the performance of two actions will likely be. The work in (56) uses quantile statistics to
construct a two-stage sampling mechanism for action selection, and has since been demonstrated to
perform well on a logistic problem with up to 1M actions (57).

3.5. Complex Dynamics

To compute good approximate solutions, the above mentioned approximate POMDP solvers rely on
a large number of forward simulations. They assume that each single-step forward simulation can be
computed almost instantaneously. However, this assumption is false for robots with complex dynamics
—that is, robots whose dynamics are non-linear and has no closed form solution—, where a single-
step forward simulation may involve solving (Partial) Differential Equation(s), which is expensive to
compute. Such complex dynamics are often required when a robot needs to perform fine motion, such
as, opening screws, or when a robot operates near its maximum capability, such as, car racing.

The work in (58) proposes to represent complex dynamics as switching state-space dynamics model
(hybrid dynamics model), and then proposes an offline sampling-based solver for POMDPs with such a
hybrid dynamics model. Another method (59), which is typical for robotics applications, is to linearize
the dynamics and uses LQR (43), a known method from control. The issue is linearization does not
always work. A different approach is proposed in (37), which uses MCTS-based online solvers with
the Multi Level Monte Carlo (MLMC) (60) to compute the single-step forward simulations. The
MLMC is used to approximate dynamic computation with varying level of fidelity, with the goal of
using the expensive original dynamics only occasionally, while the majority of the approximation uses
less fidelity dynamics that are less expensive to compute.

4. Applying POMDPs to Physical Robots

Given the current scalability of POMDP solving, POMDPs have been applied to solve planning and
control problems in various physical robot applications, including in a robot demonstration spanning
over a 7 consecutive days and 7 hours per day at SIMPAR 2018 and ICRA 2018 (61). This section
discusses some of the available software and lessons learned from applying POMDPs to physical
robots.

4.1. Software

There has been a number of software tools for solving POMDPs being released as open-source soft-
ware. For instance:
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• Symbolic Perseus (62) implements Perseus (21) but with Algebraic Decision Diagrams (ADD)
for factored representation (63). It accepts a text file with SPUDD format (64) as its inputs.
Symbolic Perseus is written in Java and Matlab, and requires Matlab’s Java Virtual Machine.

• ZMDP (65) implements HSVI (15) and HSVI2 (16). It is written in C++ and accepts text file
with the Cassandra file format (66), which represents flat POMDP models, as inputs.

• Approximate POMDP Planning (APPL) Toolkit (67) implements SARSOP (17). It is writ-
ten in C++. As its inputs, it accepts a text file in either the Cassandra (66) or PomdpX file
formats (68). The latter represents factored representation and explicit separation of fully ob-
served and partially observed state variables (69).

• APPL-online (70) implements DESPOT (35) and is written in C++.

• Toolkit for approximating and Adapting POMDP solutions In Realtime (TAPIR) (71) imple-
ments ABT (36) and is written in C++.

• On-line POMDP Planning Toolkit (OPPT) (72) is a software toolkit that provides a framework
to ease interfacing with ROS. The POMDP model can be provided in two modes. First is via a
text file where users can specify parameters for uncertainty. This mode of input is specifically
designed for robot motion planning problems. For a more general problem, users can encode
POMDP problems as plugins, with one plugin for each component (transition, observation,
and reward functions). The default solver for this toolkit is ABT (36), though OPPT provides
interface to incorporate other solvers too. OPPT is written in C++.

• pomdp py (73) is a general purpose POMDP solving library, written in Python and Cython. It
provides programming interface to implement POMDP models and solvers.

4.2. Implementation Tips

Parallelizing belief update, planning, and execution. Naive implementation of POMDP solvers,
and specifically online solvers described in Section 3, are sequential —that is, belief update, then
computing the best action to perform from the new belief, and finally executing the action. However,
such an implementation often cause delays during execution, due to the often expensive computation
to update beliefs and compute the best action from the new belief. These delays can be reduced by
parallelizing the belief update and best action computation processes, and starting the computation as
soon as an action started being executed (61).
For instance, suppose the robot is at belief b and has just started execution of the action a∗ ∈ A. Then, if
the belief update performs the Sequential-Importance-Resampling (SIR) particle filter, the SIR process
can start as soon as the robot decides to execute a∗. SIR particle filter consists of two steps. First is
sampling from a proposal distribution, which in our case, s′ ∼ T (s, a∗, S ′) where s ∈ S are sampled
from b. Second is updating the importance weights of the samples s′ based on the observation o ∈ O
perceived. The first step of drawing samples can start once the robot decides to execute a∗. By doing
so, once the action is completely executed and an observation is perceived, SIR only needs to update
the importance weights, which can be done fast.
In computing the best action, if ABT is used, one can sample additional episodes, starting from states
sampled from the current belief b and performing a∗, as soon as the robot decides to execute a∗, so as to
improve the policy within the entire descendent of b via a∗ in the belief tree T . This strategy increases
the chances that after a∗ is completely executed and the belief is updated based on the observation
perceived, a good policy for the next belief is readily available in T . Of course, there are cases where
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even with the above strategy, the robot perceives observations that were not explored in T . In such
cases, one can reuse value estimates from nearby beliefs or restart planning from scratch.

Distance function. Some of the solvers use distance function between beliefs as part of their com-
putation, often as a heuristic to assess how close two beliefs are. For this purpose, L1 metric and
KL-divergence have often been used. However, for robotics problems, it is often desirable to account
for the state space distance when computing distance between beliefs. For this purpose, Earth Mover
Distance (EMD) is often more suitable than L1 or KL-divergence (74). Fast EMD computation has
been developed in the computer vision community, including incorporated in OpenCV.

4.3. Some Notes on the POMDP Models

Below are three main concerns one often have about using POMDPs, together with a discussion that
we hope would reduce such concerns.

How difficult is it to generate a suitable POMDP model? A POMDP model consist of six compo-
nents. The state, action, and observation spaces are generally easy to define. However, the transition,
observation, and reward functions are indeed harder to define. To model the transition and observa-
tion functions, one can use information about potential errors and develop a relatively conservative
estimate, learn from data, or a combination of both. Setting the reward function can be quite involved
if one wants to use the reward function as a heuristics to help guide the search. However, if we set
the reward function to reflect desirability of being in a state, rather than as heuristics, then setting the
reward functions are easier, though in this case, we do need solvers with good scalability.
Moreover, in most robotics problems, one can generate good POMDP policies without accurate
POMDP models. For instance, the transition and observation functions used in a POMDP demon-
stration at ICRA’18 (61) are a very rough estimate, learned using a simple likelihood approach from
a small amount of data. However, the POMDP strategies generated for this rough model resulted in
a 100% success rate, while those generated without consideration of uncertainty resulted in only 35%
success rate (61). Furthermore, results on end-to-end POMDP model learning and solving (75) in-
dicate the models learned can often be different from the correct model but the policy generated are
performing well.

What do we really gain by formulating and solving a problem as a POMDP? The short answer
is robustness. A more nuanced answer is that by constructing a feedback policy that quantifies un-
certainty, POMDPs can automatically balance trade-offs between information gathering actions and
performing actions to achieve its task. In fact, it can even identify actions that could achieve both, as
highlighted in the simulation result of (41). Such a capability is important when the solution space is
small, such as when robots must operate in cluttered or confined environment.

Isn’t first order Markov too restrictive? One concern with POMDPs is the first order Markov re-
quirement. It might be useful to clarify that the POMDP policy actually accounts for the entire history
because a POMDP policy maps beliefs to actions, and beliefs are sufficient statistics of the entire
history (14). The first order Markov is indeed required for the transition dynamics and observation
functions. However, the first order Markov requirements for those functions are also common in state
space control (76), which is often used in robotics.
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5. Discussion

The above two sections present an overview of some of the general sampling-based approximate
POMDP solvers. This is by no means an exhaustive list of POMDP solving approaches. For in-
stance, we did not cover policy search based approaches that have been introduced since (77). We also
did not provide coverage on work that restricts beliefs to be Gaussian and those that extend determinis-
tic sampling-based motion planning, such as the Probabilistic Roadmap (44), to belief space planning
beyond the few mentioned above. Furthermore, the surveys (78) and (79) provide a more exhaus-
tive list on offline sampling-based approximate POMDP solvers up to 2013 and approximate online
POMDP solvers up to 2008, respectively. However, we focus to elaborate computational issues that
have hindered the practicality of POMDPs in robotics and elucidate ideas that have alleviated them.

5.1. Comparison to Sampling-Based Motion Planning

Taking a step back, it is interesting to note that the key techniques and progressions that enable
POMDPs to become practical in robotics is close to those of motion planning. Table 1 tries to capture
this similarity.

Table 1 Sampling-based POMDP Solvers and Motion Planning

Progress in Capability
Towards Sampling-based methods

POMDPs Motion Planning

Helpful concepts and
theoretical results

Optimal value function is (or can be ap-
proximated arbitrarily close to) a piece-
wise linear convex function (2) for
α-vectors representation, and heuristic
based forward search (29) for online
tree-based solvers.

The configuration space (80).

Fast primitive computa-
tion

Point-based dynamic programming (20)
for offline solvers and Upper Confi-
dence Tree (33) for online solvers.

Fast collision-check (81, 82).

Combined sampling-
based with a more
classical approach

Combined point-based and standard dy-
namic programming backup (20).

Potential field with randomization to
exit local minima (83) and the Ariadne’s
Clew algorithm (84).

Full sampling-based to
solve the problem start
to become scalable

Off-line, where a good policy π is com-
puted prior to execution, and during ex-
ecution, the action π(b) will be executed
whenever the agent is at belief b, started
with (12).

Multi-query, where the goal is to con-
struct a compact representation of the
free space component of the robot’s con-
figuration space, started with (44).

Sampling-based to solve
a smaller problem (po-
tentially, iteratively) to
improve scalability

On-line, where the best action to per-
form is computed only for the belief
at the current time-step, popularized
by (32).

Single-query, where the goal is to an-
swer a query to move the robot from
a given initial to goal configurations,
started with (85).

5.2. Relation to Learning

The POMDP is closely related to learning. It is a basic representation for model-based Bayesian
Reinforcement Learning (86). Reinforcement Learning (RL) can be defined as a Markov Decision
Process (MDP, the fully observed version of POMDP) with missing components. Since MDP models
a fully observed system, MDP is defined as 〈SMDP,AMDP,TMDP,RMDP〉, whereSMDP is the state space,
AMDP is the action space, TMDP(s, a, s′) is the transition function, representing the conditional proba-
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bility function of moving to state s′ ∈ SMDP after performing action a ∈ AMDP from state s ∈ SMDP,
and RMDP is the reward function. RL is then defined as MDP with initially unknown transition and/or
reward functions.

POMDP representation of the RL problem is to model uncertainty over the TMDP and RMDP as prob-
ability distribution functions, generally as parametric distribution functions. The parameters of these
functions are then set as partially observed state variables of the POMDP agent. As the POMDP agent
perceives observations, its understanding about the true parameters improve. By solving this POMDP
problem, the agent automatically balances the trade-off between information gathering actions to re-
duce uncertainty on the parameters and actions to achieve the task, and identifies actions that help
improve both model understanding and task attainment. The difficulty of this approach of RL is that
naive modelling often results in POMDP models that are much larger than the size of problems that
state of the art POMDP solvers can handle.

On another note, as mentioned in Section 4.3, the transition and observation functions of POMDPs
have often been learned from data. More recently, deep learning has been applied to solve POMDPs
when its model is not fully known. Some of the early work (87, 88, 89) are model free, they directly
learn the policy or value function without learning the POMDP model. However, better generalization
has been achieved with methods (90, 75, 91, 92, 93) that embed the POMDP structure inside a neural
network and training the network to learn a policy or value function, thereby combining model-based
and model-free methods.

6. Conclusion

The Partially Observable Markov Decision Process (POMDP) is a mathematical framework for plan-
ning under uncertainty, and specifically for non-deterministic and partially observable scenarios. Find-
ing the optimal solution to a POMDP problem is computationally intractable. However, sampling-
based methods are now available to compute good optimal solutions —ones that significantly improve
the robustness of robotics systems— within reasonable computational resources. Improving the scal-
ability of POMDPs from a mere theoretical concept that can only work for small toy problems into
a software tool that can be applied to a variety of realistic robotics problems requires multiple issues
to be overcome. For robotics problems, five major issues are large state, observation, and actions
spaces, long planning horizon, and complex dynamics. Various sampling-based techniques have been
proposed to alleviate these issues. Software implementations of some of these methods and interfaces
to typical robotics software are now available as Open Source Software to ease applying POMDPs
to robotics problems. This paper presents an overview of the issues, methods, and practical tips on
applying POMDPs to robotics.

Although some scalability issues in POMDPs remain, existing methods are efficient enough to improve
the robustness of many robotics problems. We hope this paper could provide insights on the current
state of POMDPs and help bring more awareness on the practicality of POMDPs in robotics.
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