
Online Planning for Interactive-POMDPs using Nested Monte Carlo
Tree Search

Jonathon Schwartz, Ruijia Zhou and Hanna Kurniawati
School of Computing, Australian National University

{jonathon.schwartz, ruijia.zhou, hanna.kurniawati}@anu.edu.au

Abstract— The ability to make good decisions in partially
observed non-cooperative multi-agent scenarios is important
for robots to interact effectively in human environments. A
robust framework for such decision-making problems is the
Interactive Partially Observable Markov Decision Processes (I-
POMDPs), which explicitly models the other agents’ beliefs up
to a finite reasoning level in order to more accurately predict
their actions. This paper proposes a new online approximate
solver for I-POMDPs, called Interactive Nested Tree Monte-
Carlo Planning (I-NTMCP), that combines Monte Carlo Tree
Search with the finite nested-reasoning construction of I-
POMDPs. Unlike existing full-width I-POMDP planners, I-
NTMCP focuses planning on the set of beliefs at each nesting
level which are reachable under an optimal policy and uses
sampling to construct and update policies at each nesting level,
online. This strategy enables I-NTMCP to plan effectively in
significantly larger I-POMDP problems and to deeper reasoning
levels than has previously been possible. We demonstrate I-
NTMCP’s effectiveness on two competitive environments. The
results indicate that I-NTMCP can generate substantially better
policies up to more than 50× faster than I-POMDP Lite – one
of the fastest I-POMDP solvers today. In the pursuit-evasion
domain, we show I-NTMCP can plan effectively in a complex
problem with over 88K states, which is two orders of magnitude
larger than existing I-POMDP planning benchmark problems.

I. INTRODUCTION

To operate and interact effectively in human environments,
robots need to be able to account for uncertainty in the their
own actions and perceptions as well as uncertainty about the
other agents’ behaviours and reasoning. Partially Observable
Markov Decision Processes (POMDPs) [1], [2] provide a
mathematical framework for handling uncertainty in both the
effect of actions and the agent’s perceptions. However, they
are designed for single-agent problems. Interactive-POMDPs
(I-POMDPs) generalize POMDPs to multi-agent domains by
incorporating behavioural models of the other agents [3]. I-
POMDPs provide a framework of recursive reasoning which
allows an agent to explicitly model the other agents, which
in turn model other agents, and so on down to some finite
depth. Similar to POMDPs, an I-POMDP agent never knows
its exact state and must infer the best action to perform with
respect to beliefs, where a belief is a distribution over the
possible physical states. However, in an I-POMDP, the set of
possible states is the joint product between the set of physical
states and the set of possible models of the other agents.
This makes I-POMDPs ideal for modelling decision making
problems involving uncertainty about the other agents in the
environment, including non-cooperative agents [4], [5], [6].

While I-POMDPs possess many desirable properties, their
application has been restricted to relatively small problems
due to their high computational complexity. I-POMDPs
inherit the intractability of POMDPs [7] while introducing
additional complexity, namely the curse of nested reasoning,
due to the inclusion of other agent models. This difficulty has
motivated research into more tractable methods of solving I-
POMDPs [8], [9], [10], [11], [12]. However, the best solvers
today are still limited to problems with only hundreds of
states. This is a far contrast to existing online POMDP
solvers [13] which are capable of handling problems with
millions of discrete states and even continuous state spaces
with many dimensions.

Motivated by recent advances in POMDP planning, this
paper proposes an online I-POMDP planner based on Monte
Carlo Tree Search (MCTS) [14], called Interactive Nested
Tree Monte-Carlo Planning (I-NTMCP). I-NTMCP is de-
signed for the subclass of I-POMDPs where there is common
knowledge of the initial belief and models among agents.
This sub-class captures many problems of practical interest
and has been a focus of prior I-POMDP solvers [10], [12].

I-NTMCP focuses on computing the best action to perform
from the current belief, which allows I-NTMCP to minimise
the computation required in estimating the policy of the other
agents. To find the best action from a belief, I-NTMCP
constructs and maintains a sequence of inter-related belief
trees, where each tree encodes an approximately optimal
policy for an agent operating at a particular nesting level.
This sequence of trees is built bottom-up, from the lowest to
the highest nesting level, using MCTS.

The results are promising. Tests on two competitive two-
agent problems indicate that I-NTMCP can plan effectively
in a problem that is two orders of magnitude larger than
existing I-POMDP benchmark problems.

II. BACKGROUND ON I-POMDPS

I-POMDPs generalize POMDPs [1], [2] to multi-agent
settings by including models of other agents in the belief
state space [3]. While I-POMDPs can be used to model any
finite number of agents, in this paper we restrict ourselves
to environments with two agents. With this is mind, and for
readability, we limit the following background to I-POMDPs
with only two agents.

Formally, a finitely-nested I-POMDP for an agent i with
nesting level l interacting with another agent j is a tuple
⟨ISi,A,Oi, Ti,Zi,Ri, γ⟩, where:

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 8770

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

81
71

3

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

• ISi,l denotes the set of interactive states defined as,
ISi,l = S ×Mj,l−1 for l > 0, and ISi,0 = S, where
S is the set of physical states and Mj,l−1 is the set of
possible models for agent j and nesting level l − 1.

• A = Ai × Aj is the set of joint actions of all agents.
Where a = ⟨ai, aj⟩ denotes a joint action.

• Oi is the finite set of observations for agent i. Where
oi denotes an observation for agent i.

• Ti : S×A×S → [0, 1] is the Markovian state transition
function, defining Pr(s′|a, s).

• Zi : S ×A×Oi → [0, 1] is the Markovian observation
function, defining Pr(oi|a, s).

• Ri : S ×A → R is the reward function.

In an I-POMDP, the environment interaction unfolds in
discrete time steps. At each step, all agents simultaneously
perform an action ai and receive an observation oi and
reward ri. The interaction can continue for a finite or infinite
number of steps. A sequence of actions and observations of
an agent i is an agent history, ht

i = {a1i , o1i , ..., ati, oti}1. Sim-
ilarly, a joint history is a sequence of joint actions and joint
observations, ht = {a1, o1, ..., at, ot}, where o = ⟨oi, oj⟩
denotes a joint observation.Ht

i is the set containing all time t
agent i histories, whileHt is the set containing all time t joint
histories. For this paper we assume the optimality criteria
for each agent is to maximise their expected discounted
return, which for an agent i is the total discounted reward
accumulated from time t onwards, Rt

i =
∑∞

k=t γ
k−trki ,

where γ is a discount factor.
Similar to [10], [11], [12], I-NTMCP focuses on the class

of I-POMDPs where the frame, θ̂j = ⟨A,Oj , Tj ,Zj ,Rj⟩, for
each agent is common knowledge and is fixed, the transition
function is the same for both agents, T = Ti = Tj , and at
each level the modelling agent only considers the intentional
models of the other agent that are one level below. Hence,
we simplify the definition of the set of intentional models
to be the set of possible beliefs of the other agent over the
interactive states, Θj,l−1 = {bj,l−1 : bj,l−1 ∈ ∆(ISj,l−1)}.
Level 0 beliefs correspond to beliefs that do not explicitly
consider other agents, and instead model them as part of the
environment. A level 1 belief of agent i, bi,1, is a belief over
the state of the environment and the level 0 beliefs of agent
i. This recursive definition can be extended to any desired
level of nesting. Using this well defined hierarchy of nested
beliefs, I-POMDPs can be solved via a finite recursion, where
the solution at each belief level is built using the solution of
the level directly below it [3].

Various exact and approximate I-POMDP solvers have
been proposed, including methods based on model equiva-
lence [15], particle filtering [9], value iteration [8], structural
problem reduction [10], policy iteration [11], modelling other
agents as finite state-automata [16], and function approxi-
mation using deep learning [12]. Furthermore, I-POMDPs
solvers when transition and observation models are initially
unknown have also been proposed [17], [18].

1Here and in the remainder of this paper the superscript notation is used
to specify the time index.

Despite the above advances, existing I-POMDP solvers are
still practically limited to problems with a few hundred states.
This is in contrast to POMDP solvers which can now handle
problems with millions of discrete states and continuous
states spaces [19], [20], [21], [22], [23]. In this work we
extend advances in online planning for POMDPs, specifically
methods based on Monte Carlo Tree Search (MCTS) [20],
to the multi-agent setting using the I-POMDP formalism.

Most closely related to our work is [16] which presents a
method for online Monte Carlo planning using learned subin-
tentional models of the other agent. We take this research a
step further by using online planning with intentional models
of the other agent to an arbitrary reasoning depth.

III. OVERVIEW OF I-NTMCP

A. Problem Setting and Assumptions

I-NTMCP is an online approximate I-POMDP solver for
the subclass of I-POMDPs where there is a common initial
belief over states, b0, and where all agents have knowledge
of the other agents’ frames and share a transition function.
While the observation space, observation function, and re-
ward functions of each agent are common knowledge, no
assumptions are made about the form of the reward and
observation functions. The assumptions we make are used
in other I-POMDP solvers, however, unlike many other I-
POMDP solvers which require an explicit representation of
the I-POMDP functions, ⟨T ,Z,R⟩, I-NTMCP only requires
a generative model G of the joint environment dynamics. This
requirement of only a generative model is especially useful
for domains that are difficult to model or where a compact
representation of the transition or observation probabilities
may not be available, as is often the case for large problems.

Similarly to the majority of prior work on I-POMDPs, in
this paper we restrict ourselves to environments with two
agents. Conceptually, it is possible to extend I-NTMCP to
environments with more than two agents, however for N
agents this would require maintaining (N − 1)l belief trees
for a given nesting level l. This complexity is not unique
to I-NTMCP and problems with more than two-agents are a
challenge for I-POMDP solvers in general, especially when
dealing with deeper nesting levels. Conversely, the online
sample-based nature of I-NTMCP opens up a number of
avenues of investigation for efficiently scaling up I-NTMCP
to more than two agents - a possibility for future work.

B. Algorithm Overview

At a high level, I-NTMCP constructs and maintains a
sequence of inter-related belief trees. Each tree represents the
set of beliefs reachable under an optimal policy and encodes
an approximately optimal policy for an agent with a partic-
ular nesting level. We denote the sequence of inter-related
belief trees for agent i as Ti,L, Tj,L−1, Ti,L−2, · · · , Tk,0,
where L is the nesting level being considered, and where
k = i if L is even and k = j if L is odd. The notation
Tk,l refers to the belief tree of agent k, where k ∈ {i, j},
operating at nesting level l ∈ [0, L]. Each node of Tk,l is
associated with an agent history, hk, and represents a belief

8771

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Top-down construction of the I-NTMCP Nested Trees Data structure. Shown here is the first step of a single simulation for I-NTMCP using a
nesting level of two for an environment involving two agents i (red) and j (blue) who both have two actions and observations. In this case the planning is
being done for agent i, and the level 1 tree of agent j is being expanded. Following step 6, the simulation continues until a leaf node is reached, at which
point a rollout is used to estimate the value of the leaf node.

bk,l for agent k when operating with nesting level l. Along
with the belief, each node maintains an information tuple
⟨Nk,l, Vk,l⟩, where Nk,l is the number of times the node has
been visited and Vk,l is the value of the belief represented
by the node. Each edge of Tk,l corresponds to an action–
observation pair ⟨ak, ok⟩ where ak ∈ Ak and ok ∈ Ok.
An edge from bk,l to b′k,l implies that there is a pair of
action–observation ⟨ak, ok⟩ such that, if at belief bk,l, agent
k performs action ak and perceives observation ok, agent k’s
belief will become b′k,l.

Now, the question is how do we represent the beliefs.
I-NTMCP follows the nested-belief idea of I-POMDP, but
represents the belief of the other agent using the agent’s
histories. The use of histories to represent beliefs is aligned
with the representation used in many state-of-the-art online
POMDP solvers. Specifically, we define a history-state wt

as a tuple wt = ⟨st, ht⟩, where st ∈ S is the physical state
and ht = ht

i × ht
2 is the joint history of agent i and agent

j. Wt denotes the set of all time t history-states 2 . A node
in belief tree Tk,l that is associated with time t history ht

k

is then defined as a belief bk,l(wt, ht
k) = P (wt | ht

k), where
k ∈ {i, j} and wt ∈ Wt. I-NTMCP represents each belief
node as a set of unweighted particles of history-states.

I-NTMCP expands the tree, and also updates beliefs, by
evolving each particle. To evolve a particle w in belief
node bi,l(· , hi), I-NTMCP must estimate the action that
will be taken by the other agent, i.e., agent j at belief
bj,l−1(· , w.hj). Such an action can be inferred from the best
action from the belief node bj,l−1(· , w.hj) in tree Tj,l−1.
This dependency forms the inter-relation between the belief
trees. Figure 1 illustrates the representation of trees in I-
NTMCP, while the details of tree construction and belief
updates are presented in the next section.

2We specify agent k’s history contained in the history-state wt using the
notation wt.ht

k . Similarly for the state wt.st, joint history wt.ht, joint
action wt.at, and joint observation wt.ot, agent k action wt.atk , and agent
k observation wt.otk . When t is clear, we omit the time superscript, in
which case w = wt.

Last but not least, given the true belief over the space
of history-states for an agent, say agent i, bi(w, hi), and
the fixed history-based policy for the other agent, say πj ,
I-NTMCP converges to the optimal value function. This
convergence is a straightforward derivation of the proofs in
[3], [24], and [20].

IV. DETAILS OF I-NTMCP

I-NTMCP takes as its inputs the joint action space A, the
initial belief over physical states b0 ∈ ∆(S), a fixed policy
for the other agent at level 0 π−k,0(a−k|h−k) corresponding
to a subintentional model (e.g. uniform random), and a
generative model G of the joint environment dynamics,
⟨st+1, ot+1, rt+1⟩ ∼ G(st, at+1). Given this information,
I-NTMCP constructs the sequence of inter-related belief
trees online and bottom-up. Each tree is constructed using
Monte Carlo Tree Search (MCTS). After each real action
and observation, I-NTMCP updates beliefs top-down using
particle filtering.

A. Constructing the Sequence of Inter-Related Trees

To begin, at time t = 0, I-NTMCP initializes the root of
each tree Ti,L, Tj,L−1, · · · , Tk,0 to represent the initial belief
b0 = bk,l(⟨s0, ∅⟩, ∅), while the information tuple ⟨Nk,l, Vk,l⟩
in each root node is initialised to 0 for Nk,l(b

0) and the
highest expected immediate reward over all possible actions
for Vk,l(b

0). Without loss of generality, we will assume the
level l ∈ [0, L] tree Tk,l corresponds to agent k and use −k
to denote the other agent.

The I-NTMCP search algorithm is described in Algo-
rithm 1. At each step t, I-NTMCP constructs the sequence
of inter-related trees by expanding each tree for some fixed
number of simulations M , starting with the lowest level
tree Tk,0 and working up to the top level tree Ti,L. Each
individual expansion begins from a time t root node corre-
sponding to a time t history, ht

k, of the agent at the level
being expanded. For the top level tree Ti,L this will be the
real time t history observed from the environment by agent

8772

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

i, ht
i. Trees at lower levels l < L may have many possible

time t histories, since the nodes of lower level trees represent
the possible histories of the agent at lower levels, which
are not directly observable by the agent one level above.
I-NTMCP uses top-down recursive sampling to ensure that
during expansion the number of simulations assigned to a
given time t node in the lower level trees is proportional to
how likely the history associated with that node is, within the
time t beliefs of the higher level trees. In this way planning
computation is directed to provide better estimates for the
lower level beliefs that are more likely within the higher
level beliefs.

Specifically, for expanding the tree Tk,l at level l each
simulation starts by sampling a history-state from the root
node of the level L tree corresponding to the true observed
history of agent i, wt

L ∼ bi,L(·, ht
i). The history contained

in wt
L is then used to sample a history-state from the level

below, wt
L−1 ∼ bj,L−1(·, wt

L.h
t
j). This recursion continues

until level l, at which point MCTS is used to run a single
expansion starting from the belief node corresponding to the
agent k history in the sampled history-state, wt

l+1.h
t
k. Each

expansion, starts by sampling a history-state from the root
of Tk,l and then traversing the tree Tk,l in two stages using
Monte Carlo simulation and the generative model G.

The first stage involves traversing Tk,l based on the UCT
algorithm until a leaf node is reached. Suppose the simulation
starts from the sampled history-state wt ∈ Wt. Similar to
UCT, I-NTMCP needs to select an action to progress the
Monte Carlo simulation. However, unlike a typical UCT
algorithm, I-NTMCP needs to use a joint action a ∈ A to
perform this simulation, which requires it to infer the action
of the other agent. Therefore, we separate action selection
into two types. For the agent represented by the tree being ex-
panded, agent k in this case, actions are selected using UCB1
as is typical with UCT, ak ← argmaxa∈Ak

Vk,l(h
t
ka) +

c
√

logNk,l(ht
k)

Nk,l(ht
ka)

. For the other agent, −k, if l > 0 actions
are sampled using the level l− 1 belief tree, T−k,l−1, while
if l = 0 the fixed level 0 policy, π−k,0 is used. Actions
are selected using the history for agent −k contained in the
sampled history-state, wt.ht

−k. When selecting actions from
T−k,l−1 actions are sampled for the given ht

k using a softmax
function, Pr(a−k|ht

−k) = η exp
N−k,l−1(h

t
−ka−k)√

N−k,l−1(ht
−k)

, where η

is a normalizing constant. The softmax policy accounts for
T−k,l−1 being an approximation of the true level l−1 policy
and it’s accuracy being dependent on the visit count of
the node. Once both actions have been selected, the joint
action, at+1 = ⟨at+1

k , at+1
−k ⟩, is used along with the state in

the sampled history-state, wt.st, to generate the next state,
joint observation, and joint reward, ⟨st+1, ot+1, rt+1⟩ ∼
G(wt.st, at+1). All this information together provides the
next history-state, wt+1 = ⟨st+1, wt.htat+1ot+1⟩, which is
added as a particle to the next belief bk,l(h

t
ka

t+1
k ot+1

k) as
part of the Monte Carlo belief update process. The first stage
continues until a leaf node in the search tree Tk,l is reached.

In the second stage, a rollout is used to estimate the value
of the leaf node. Rollouts are performed in a similar manner

Algorithm 1 POSGMCP Search
Require: Generative model G, Discount γ
Require: Nested Trees T1,L, T2,L−1, ..., Tk,0
Require: Number of simulations per level M

procedure SEARCH(h1)
▷ h1 here is the real history for agent-1 at level L

for d← 0, ..., L do
for 1, ...,M do

NESTEDSIMULATION(h1, L, d)
end for

end for
return argmaxa1∈A1

V1,L(h1a1)
end procedure

procedure NESTEDSIMULATION(hk, l, depth)
w ∼ bk,l(·, hk) ▷ w = ⟨s, ⟨hk, h−k⟩⟩
if l = depth then

SIMULATE(w, hk, l, 0)
else

NESTEDSIMULATION(w.h−k, l − 1, depth)
end if

end procedure

procedure SIMULATE(w, hk, l, t)
if γt < ϵ then

return 0
end if
if hk /∈ Tk,l then

for all ak ∈ Ak do
Tk,l(hkak)← ⟨Ninit(hkak), Vinit(hkak), ∅⟩

end for
return ROLLOUT(w.s, hk, t)

end if
a← SELECTACTION(w, hk, l)
⟨s′, o, r⟩ ∼ G(w.s, a)
w′ ← ⟨s′, w.hao⟩
Rk ← rk + γ SIMULATE(w′, hkakok, t+ 1)
bk,l(hkakok)← bk,l(hkakok) ∪ {w′}
Nk,l(hkak)← Nk,l(hkak) + 1
Nk,l(hkakok)← Nk,l(hkakok) + 1

Vk,l(hkak)← Vk,l(hkak) +
Rk−Vk,l(hkak)

Nk,l(hkak)

return Rk

end procedure

procedure SELECTACTION(w, hk, l)
ak ← argmaxa∈Ak

Vk,l(hka) + c
√

logNk,l(hk)
Nk,l(hka)

if l = 0 then
a−k ∼ π̄−k,0(·|w.h−k)

else
a−k ∼ T−k,l−1(w.h−k)

end if
return ⟨ak, a−k⟩

end procedure

8773

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

to Monte Carlo planning for POMDPs, with the exception
that actions are selected for both agents. Starting from the
sampled history-state at the leaf node w, a sequence of
history-states is generated using rollout policies for each
agent, until a terminal state or discount horizon is reached.
The value of the leaf node is estimated by the return Rk

from the rollout. During the rollout, actions for agent i
and agent j are selected using history-based rollout policies,
πi,rollout(ai|hi) and πj,rollout(aj |hj) - e.g. uniform random
action selection or using domain knowledge. Following the
rollout, the generated return Rk is used to update the value
estimates of all the parents of the new leaf node. After
each simulation, exactly one new node is added to the tree
Tk,l which corresponds to the first new history encountered
during that simulation.

B. Belief Update

The I-NTMCP tree is updated top-down after each real
step. After agent i at nesting-level L performs action at−1

i,L

and receives observation oti,L, the root belief nodes of each
search tree are updated to incorporate the new information.
The tree Tk,l at each level is updated using a distribution
over possible histories for the agent at that level. Let Xt

k,l

denote a discrete distribution over Ht
k. At the top level L,

the exact history for the agent is known since it is the actual
history for the acting agent. Hence, Xt

i,L is the discrete
distribution with probability 1 for the true history of agent i
and probability 0 for all other time t histories. Using Xt

i,L

the distribution over possible histories of the other agent,
Xt

j,L−1, is calculated. Xt
j,L−1 specifies which time t belief

nodes to keep and update in the tree Tj,L−1. In general, given
the history distribution Xt

i,l for agent i at level l > 0, the
probability of a given history ht

j ∈ Ht
j for agent j at level

l − 1, denoted as Xt
j,l−1(h

t
j) is given by:

Xt
j,l−1(h

t
j) =

∑
ht
i∈Ht

i

Xt
i,l(h

t
i)

|bti,l(ht
i)|

∑
wt∈bti,l(h

t
i)

δK(wt.ht
j , h

t
j) (1)

Where δK is the Kronecker delta function which is 1 when
wt.ht

j = ht
j and 0 otherwise. |bti,l(ht

i)| denotes the number of
particles in the belief node of the level l tree for history ht

i.
Note that in eq. 1, Xt

j,l−1(h
t
j) is calculated by iterating over

the set of all time t histories for both agents. In practice the
number of histories used is not directly dependent on the size
of the time t history sets, but instead depends on the number
of particles stored in the trees which in turn is a function of
the number of simulations being used for planning and the
observation branching factor of the environment. This means
that even as the number of possible histories grows as the
episode horizon grows, the update time remains relatively
constant. Of course this speed comes at the cost of accuracy
but one of the big advantages of MCTS based methods is
that the compute resources will naturally be used to explore
the most likely histories in expectation.

The I-NTMCP update function also employs a pruning
and reinvigoration step. Similar to MCTS based POMDP

Fig. 2. The 7x7 Runner-Chaser problem (left) and the optimal finite-nested
reasoning path choice for each agent based on nesting level l (right).

planners, the pruning step removes unreachable branches
from each tree. In I-NTMCP this corresponds to removing
any time t histories in the tree that have a zero probability
in the update history distribution Xt

i,l. The reinvigoration
function adds additional particles to each remaining time t
belief node in the tree in order to combat particle depletion.
For our experiments we added a fixed number of particles
K across the time t belief nodes in each tree. The number
of additional particles added to a given belief node was
weighted by the probability of that belief node’s history.
For a given history ht

i the number of additional particles
was equal to KXt

i,l(h
t
i). In this way only a constant number

of particles were added each update and the particles were
distributed based on belief node probability.

V. EXPERIMENTS

We evaluate I-NTMCP on two competitive environments.
The aim of these experiments is two-fold. First, to evaluate
the effectiveness of I-NTMCP for planning with nested-
reasoning in the multi-agent, partially observable setting.
Second, to evaluate the scalability of I-NTMCP in terms of
nesting level and problem complexity.

A. Experimental Setup

As an online solver, I-NTMCP interleaves planning and
execution. The planning time reported for I-NTMCP was
based on the number of simulations used per execution step,
which was set to be constant for a given experiment and agent
across nesting levels. For example, an experiment using M
simulations for I-NTMCP with nesting level L, would use
M simulations at all nesting levels l ∈ [0, L], resulting in
a total of (L + 1)M simulations for each execution step.
K = M/16 additional particles were added during belief
reinvigoration after each execution step.

We set the UCT exploration constant c to be c = Rhi−Rlo,
where Rhi was the highest return achieved during sample
runs of I-NTMCP with nesting level 0 and c = 0 against a
random opponent, and Rlo was the lowest return achieved
by a random agent against a random opponent [20]. We used
ϵ = 0.1 with a discount γ = 0.95 giving a discount horizon
of 45 steps. For all experiments, we used a uniform random
policy for the other agent level 0 policy, π−k,0.

Our implementation is open-source and available at
https://github.com/RDLLab/i-ntmcp.

8774

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The 8x8 Pursuit-Evasion problem. Cells 3 and 4 are possible start
locations of the Pursuer (blue). Cells 0-2 & 5-7 are possible start and goal
locations for the Evader (red). The evader’s start and goal locations are
always on opposite sides of the map, shown by the different colors. The
field of vision for both agents expands in a cone in the direction the agent
is facing as shown by the blue and red colored cells.

B. Scenarios

1) Runner-Chaser: Figure 2 illustrates the 7x7 Runner-
Chaser scenario. The runner (red) must reach one of the
green goal squares while avoiding capture by the chaser
(blue). Each agent knows the environment exactly, including
the start and goal locations of both agents. Both agents have
four deterministic actions corresponding to moving one cell
in each of the four cardinal directions. They observe perfectly
the four adjacent cells, specifically whether each cell is
empty, has a wall, or contains the opponent. The runner
is considered caught if the chaser observes the runner. For
both agents each action has a small cost of −1. The runner
gets a reward of +100 if it reaches the goal and −100 if it
gets caught, while the chaser receives the opposite terminal
rewards. An episode ends if the runner reaches a goal, is
caught, or has moved over 20 steps (which is considered a
draw). Three problem sizes were used: 3x3, 4x4, and 7x7.

This environment requires agents to reason about the
sequential strategy of the opponent. The map is designed so
that the chaser cannot guard both goals and therefore must
reason about which goal the runner will target. Meanwhile,
the runner must reason about which goal the chaser will
guard. Predicting the strategy of the opponent requires mod-
elling the opponent’s sequential decision making problem.

2) Pursuit-Evasion: Inspired by [25], the pursuit-evasion
problem adds significant additional complexities to the
runner-chaser problem. Similarly, it involves an evader (red)
trying to reach a goal location before it is caught by a pursuer
(blue). However, unlike the runner-chaser problem the goal
location of the evader is not known to the chaser. This is
analogous to the chaser having to reason about different
models for the runner. Furthermore, the map is larger and
more complex with more path options. Each agent is aware
of the start location of their opponent, while only the evader
knows it’s goal location. The pursuer only knows the possible
goal locations for the evader. Lastly, the observation space
of both agents is expanded. Each agent receives six bits per
step. Four bits indicate whether there is a wall or not in
each of the cardinal directions, one bit indicates whether
the opponent can be seen in the agent’s field of vision, and
the final bit indicates whether the opponent can be heard

within Manhattan distance 2 of the agent. Due to the lack of
precision of these observations, the pursuer never knows the
exact position of the evader and vice versa. Knowledge of
the shortest path to the goal was incorporated into the evader
using preferred actions and rollout policy. The action space,
rewards and terminal conditions are the same as runner-
chaser except the step limit is increased to 40. The transition
and state space are also the same with the addition of the
direction each agent is facing and the goal location for the
evader. The Pursuit-Evasion problem has 88,752 states, 4
actions and 64 observations per agent, more than two orders
of magnitude larger than existing I-POMDP benchmarks.

C. Results

1) Scalability: To evaluate the scaling performance of I-
NTMCP, we compare it with I-POMDP Lite [10] in the
Runner-Chaser scenarios. For I-POMDP Lite we used the
original program as provided by the authors. I-POMDP Lite
is considered one of the fastest I-POMDP solvers, albeit an
offline solver. We ran both I-POMDP Lite and I-NTMCP
using nesting level 1 to compute the policy for the Runner,
against random and POMDP Chasers. The POMDP Chaser
models the runner’s actions as a uniform random policy.

Table I indicate that as the problem size increases, I-
NTMCP scales significantly better than I-POMDP Lite. Even
if we aggregate the planning time for I-NTMCP over the
entire planning horizon (20 steps), the total planning time of
I-NTMCP is over 50× less than I-POMDP Lite for the 7x7
scenario, while generating a substantially better policy.

Moreover, in all but one scenario, I-NTMCP computes
equal or better policy than I-POMDP Lite. The only result
where I-NTMCP performs worse than I-POMDP Lite is on
the 4x4 problem against a Random Runner. The reason is that
unlike I-NTMCP, during execution, I-POMDP Lite has ac-
cess to the opponents performed action for its belief update.
This information allows I-POMDP Lite to know the exact
location of the opponent and overcome errors in it’s opponent
modelling introduced by the random opponent. Despite this
additional advantage, the results in Table I indicate that when
the problem size becomes larger, I-POMDP Lite’s ability to
generate a good policy suffers much more than I-NTMCP.

The performance of I-NTMCP in Pursuit-Evasion is
shown in Table II. Since the problem is too big for I-POMDP
Lite, in Pursuit-Evasion we compared I-NTMCP with uni-
form random and shortest path baselines. The shortest path
policy selects actions that follow the shortest path to the goal
(evader policy) or the evader’s start position (pursuer policy).
I-NTMCP outperformed the two baseline policies against
each opponent policy. Furthermore, as the nesting level of
the opponent increases, deeper nesting levels are required to
perform well, as shown by the drop in performance of I-
NTMCP l ∈ [0, 1] between the different opponents. These
result indicate I-NTMCP’s ability to plan using finite-nested
reasoning on a very large I-POMDP.

2) Convergence: We used the Runner-Chaser scenario to
evaluate the convergence of I-NTMCP. In this scenario, the
optimal finite-nested reasoning policy (FNR) for both the

8775

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

Problem, Chaser |S| I-POMDP Lite l = 1 I-NTMCP l = 1
H Time (s) Mean Disc. Return Simulations Time (s) Mean Disc. Return

3x3, Random 128 2 101 94.00± 0.00 1024 0.41± 0.00 94.00± 0.00
3x3, POMDP 128 2 101 94.00± 0.00 1024 0.45± 0.00 94.00± 0.00
4x4, Random 288 4 2524 82.90 ± 0.79 1024 0.67± 0.00 52.56± 3.70
4x4, POMDP 288 4 2524 63.80± 0.00 1024 0.69± 0.00 77.73 ± 0.01
7x7, Random 1,152 1 5791 −12.91± 0.11 4096 5.71± 0.17 54.94 ± 1.55
7x7, POMDP 1,152 1 5791 NA 4096 5.77± 0.32 56.23 ± 1.31

TABLE I
COMPARISON OF I-NTMCP AND I-POMDP LITE USING NESTING LEVEL 1 IN Runner-Chaser. FOR I-POMDP LITE, WE USE THE SHORTEST BEST

PERFORMING PLANNING HORIZON (H) COMPLETED IN 1 HOUR FOR THE 3X3 AND 4X4 PROBLEMS AND 2 HOURS FOR THE 7X7 PROBLEM. FOR

I-POMDP LITE THE TIME COLUMN SHOWS TOTAL PLANNING TIME, FOR I-NTMCP IT SHOWS MEAN PLANNING TIME PER STEP (± SD). THE MEAN

DISCOUNTED RETURNS (± 95% CI) USING γ = 0.95 ARE SHOWN. THE POMDP OPPONENT WAS GENERATED USING PBVI [26] AND POMCP [20]
FOR IPOMDP LITE AND I-NTMCP, RESPECTIVELY. PBVI COULD NOT BE RUN FOR THE 7X7 PROBLEM DUE TO PROBLEM SIZE. THE RESULTS ABOVE

ARE BASED ON 1000 SIMULATION RUNS FOR EACH PROBLEM AND CHASER.

Fig. 4. Performance of I-NTMCP runner against Finite-Nested Reasoning (FNR) chaser in the Runner-Chaser problem. Each line shows the mean
discounted return (±95% CI) for a random policy and I-NTMCP with different nesting levels l as the number of planning simulations increases. Each
figure shows results against a FNR chaser with a different nesting level l.

Pursuit-Evasion Random Shortest
Path

I-NTMCP
l = 0

I-NTMCP
l = 1

Random 0.31 0.52 0.06 0.08
Shortest Path 0.94 0.72 0.35 0.4
I-NTMCP l = 0 1.00 0.59 0.4 0.33
I-NTMCP l = 1 0.99 0.79 0.53 0.36
I-NTMCP l = 2 0.97 0.80 0.68 0.53
I-NTMCP l = 3 0.99 0.75 0.56 0.53

TABLE II
WIN RATE FOR PURSUER (ROW) AGAINST EVADER (COLUMN) AGENTS

IN THE Pursuit-Evasion PROBLEM. RESULTS ARE FROM 100 EPISODES,
WITH I-NTMCP USING 2048 SIMULATIONS.

runner and chaser can be easily derived and provides a stable
baseline policy for comparison. The optimal policies by
nesting level are shown in Figure 2 (right). We ran I-NTMCP
for the Runner policy using increasingly many simulations,
against the the optimal chaser policy.

The results (shown in Figure 4) indicate that as computa-
tional resources increase, the performance of the I-NTMCP
policy resembles the FNR policy. For instance, when the
Chaser uses nesting level 0 (i.e., moving to the right), the
optimal policy for the Runner is when the Runner’s nesting
level is 1 or 2, as the Runner chooses the opposite path to
the Chaser. The opposite is true for the Runner at nesting
levels 0 and 3. The left most plot in Figure 4 indicates
that the policies generated by I-NTMCP indeed converge
to the expected behaviour of the FNR policies –that is, for
nesting level l ∈ {1, 2}, the Runner policies generated by
I-NTMCP converge to winning values, while for l = {0, 3},
the policies converge to loosing values. This trend is present

for all nesting levels we tested.

Fig. 5. I-NTMCP mean planning time per step (±95% CI) for different
levels of nesting and simulation number in 7x7 Runner-Chaser. Deviations
from linear for nesting level two are due to the runner agent’s ability to
reach terminal states earlier during search, leading to a small difference in
mean planning time between runner and chaser agents.

It is worth pointing out that the choice of nesting level
can have a significant impact on performance, as indicated
by Figure 4. In this and prior work [10], [11], [12] the nesting
level is treated as a hyper parameter chosen by the user. We
hypothesize that for many practical problems where agents
only weakly interact, the performance will be robust to the
choice of nesting level given it is sufficiently high. However,
ultimately it would be desirable to have the agent infer the
nesting level of the other agent online as they interact.

Moreover, Figure 5 indicates that the planning time for
I-NTMCP is linear with nesting level, allowing it to scale
well for problems that require deeper levels of nesting.

8776

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we have presented the I-NTMCP algorithm
for online planning in multi-agent, partially observable envi-
ronments. I-NTMCP combines Monte Carlo based planning
for POMDPs with the finite-nested reasoning construction
of I-POMDPs by constructing and maintaining a sequence
of inter-related belief trees. Our experiments indicate that I-
NTMCP can plan effectively in significantly larger two-agent
I-POMDPs than similar existing methods. Furthermore, I-
NTMCP requires only a generative model of the joint en-
vironment dynamics, permitting it’s application to problems
that cannot be easily modelled.

Future work abounds. For instance, although I-NTMCP
indicates promising results, the choice of nesting level used
is manually selected by the user, similar to [10], [11], [12]).
It would be desirable for the agent to infer the nesting level
of the other agent online as they interact. Moreover, efficient
methods for further scalability and extension to continuous
spaces would also be desirable.

Last but not least, I-POMDP is a general and principled
decision-making framework that accounts for various types
of uncertainty and other agents’ reasoning. We foresee that
in scenarios that require close and substantial interactions be-
tween robots and human, such a principled framework would
be required to help ensure safety and natural interactions
between robots and human. This paper aims to improve the
practicality of such a decision-making framework.

VII. ACKNOWLEDGEMENTS

This work is supported by an AGRTP Scholarship and
the ANU Futures Scheme. The authors would like to thank
Marcus Hutter for helpful discussions around the theoretical
analysis and the anonymous reviewers for their feedback.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations re-
search, vol. 21, no. 5, pp. 1071–1088, 1973.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 99–134, 1998.

[3] P. J. Gmytrasiewicz and P. Doshi, “A framework for sequential
planning in multi-agent settings,” JAIR, vol. 24, pp. 49–79, 2005.

[4] B. Ng, C. Meyers, K. Boakye, and J. Nitao, “Towards applying
interactive POMDPs to real-world adversary modeling,” in IAAI, 2010.

[5] F. Wang, “An I-POMDP based multi-agent architecture for dialogue
tutoring,” in ICAICTE, 2013, pp. 486–489.

[6] M. P. Woodward and R. J. Wood, “Learning from humans as an I-
POMDP,” arXiv preprint arXiv:1204.0274, 2012.

[7] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441–450, 1987.

[8] P. Doshi and D. Perez, “Generalized point based value iteration for
interactive POMDPs.” in AAAI, 2008, pp. 63–68.

[9] P. Doshi and P. J. Gmytrasiewicz, “Monte-carlo sampling methods for
approximating I-POMDPs,” JAIR, vol. 34, pp. 297–337, 2009.

[10] T. N. Hoang and K. H. Low, “Interactive POMDP Lite: Towards
practical planning to predict and exploit intentions for interacting with
self-interested agents,” in IJCAI, 2013, pp. 2298–2305.

[11] E. Sonu and P. Doshi, “Scalable solutions of interactive POMDPs
using generalized and bounded policy iteration,” Auton Agent Multi-
Agent Syst, vol. 29, no. 3, pp. 455–494, 2015.

[12] Y. Han and P. Gmytrasiewicz, “IPOMDP-Net: A deep neural net-
work for partially observable multi-agent planning using interactive
POMDPs,” AAAI, vol. 33, pp. 6062–6069, 2019.

[13] H. Kurniawati, “Partially Observable Markov Decision Processes and
Robotics,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 5, no. 1, 2022.

[14] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in ICCG, 2006, pp. 72–83.

[15] B. Rathnasabapathy, P. Doshi, and P. Gmytrasiewicz, “Exact solutions
of interactive POMDPs using behavioral equivalence,” in AAMAS,
2006, pp. 1025–1032.

[16] A. Panella and P. Gmytrasiewicz, “Interactive POMDPs with finite-
state models of other agents,” Auton Agent Multi-Agent Syst, vol. 31,
no. 4, pp. 861–904, 2017.

[17] B. Ng, K. Boakye, C. Meyers, and A. Wang, “Bayes-adaptive inter-
active POMDPs,” in AAAI, vol. 26, no. 1, 2012, pp. 1408–1414.

[18] Y. Han and P. Gmytrasiewicz, “Learning others’ intentional models
in multi-agent settings using interactive POMDPs,” in NeurIPS, 2018,
pp. 666–673.

[19] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in RSS, 2008.

[20] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
NeurIPS, vol. 23, pp. 2164–2172, 2010.

[21] H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty
planning in dynamic environment,” in Robotics Research, 2016, pp.
611–629.

[22] N. Ye, A. Somani, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” JAIR, vol. 58, pp. 231–266, 2017.

[23] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for
POMDPs with continuous state, action, and observation spaces,” in
ICAPS, vol. 28, 2018, pp. 259–263.

[24] M. Hauskrecht, “Value-function approximations for partially observ-
able markov decision processes,” JAIR, vol. 13, pp. 33–94, 2000.

[25] I. R. Seaman, J.-W. van de Meent, and D. Wingate, “Nested reasoning
about autonomous agents using probabilistic programs,” arXiv preprint
arXiv:1812.01569, 2018.

[26] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxi-
mations for large POMDPs,” JAIR, vol. 27, pp. 335–380, 2006.

8777

Authorized licensed use limited to: Australian National University. Downloaded on January 02,2023 at 23:18:27 UTC from IEEE Xplore. Restrictions apply.

