
Recurrent Macro Actions Generator for POMDP Planning

Yuanchu Liang and Hanna Kurniawati
School of Computing, Australian National University

{yuanchu.liang, hanna.kurniawati}@anu.edu.au

Abstract— Many planning problems in robotics require long
planning horizon and uncertain in nature. The Partially Ob-
servable Markov Descision Process (POMDP) is a mathemat-
ically principled framework for planning under uncertainty.
To alleviate the difficulties of computing good approximate
POMDP solutions for long horizon problems, one often plans
using macro actions, where each macro action is a chain of
primitive actions. Such a strategy reduces the effective planning
horizon of the problem, and hence reduces the computational
complexity for solving. The difficulty is in generating a set
of suitable macro actions. In this paper, we present a simple
recurrent neural network that learns to generate suitable
sets of candidate macro actions that exploits environment
information. Key to this learning method is to represent the
raw partial information from the environment as a latent
problem instance, and sequentially generate macro actions
conditioned on the past information. We compare our proposed
method with state-of-the-art [1] on four different long horizon
planning tasks with various difficulties. The results indicate the
quality of the policies computed using macro actions generated
by our proposed method consistently exceeds benchmarks.
Our implementation can be accessed at https://github.com/YC-
Liang/Recurrent-Macro-Action-Generator.

I. INTRODUCTION

Planning under uncertainty is critical for reliable robot
operation. The Partially Observable Markov Decision Pro-
cess (POMDP) is a principled framework for such planning
problems. Although finding the exact solution to a POMDP
problem is intractable [2], tremendous advances have been
made in approximate POMDP solvers via sampling-based
methods [3], computing good solutions to problems that
require long planning horizon remains difficult, due to the
exponential growth of the searchable action space with
respect to planning horizon.

Many methods have been proposed to alleviate this long
planning horizon issue. They generally construct a more
abstract action, and search for good POMDP solutions using
this abstract action rather than the primitive single-step
action. As a result, they reduce the effective planning horizon
of the problem. Various methods to construct abstract actions
have been proposed. Many [4]–[6] use temporally extended
sequences of actions where actions or sub-policy are run until
some termination conditions are met. These methods require
sub-goals or termination conditions to be hand-designed to
generate good problem decomposition. Automatic generation
of abstract actions or sub-problems have also been proposed,
e.g., [7] automatically generates sequences of primitive one-
step actions for POMDP solving, [8] uses LQG policies as
sub-policies, while [9] constructs abstract actions based on
the value of information.

Latent
Representation

Recurrent
Generation

Critic

Planner

info

info Macro
Actions

Macro
Action

Gradient

Environment

Main
Contribution

Fig. 1: An illustration of Recurrent Macro Actions Generator
(RMAG). Information flow follows the blue arrows. The flow
of macro actions are shown in orange arrows. And green
arrows indicate the flow of gradients for training. The critic
module is dropped during evaluation.

On the other hand, the recent growth of deep reinforcement
learning also brings new solutions for decision making prob-
lems. Many agents equipped with fine-tuned neural networks
are able to learn to map environment inputs directly to
good actions [10]–[13]. Other works tackle the problem from
a different direction by learning algorithmic components
that accelerate the decision making process. In [14], deep
learning is used to estimate leaf nodes’ values to boost the
performance of Monte Carlo Tree Search in mastering the
game of Go. Macro actions are learned in [1] to enhance
planner’s performance by focusing on a small set of quality
actions. And, [15] learns the optimal number of multi-layer
perceptron (MLP) layers based on input instance.

By leveraging the advantages from the planning and deep
reinforcement learning paradigms, we propose Recurrent
Macro Actions Generator (RMAG, illustrated in Fig. 1) that
learns to automatically generate macro-actions —a set of se-
quences of primitive one-step actions— that aim to maximise
a planner’s performance in computing good solutions to plan-
ning under uncertainty with long planning horizon. RMAG
follows the overall actor-critic architecture of MAGIC [1],
where the actor generates candidate macro action sets that
maximises the critic’s estimated values, while the critic and
the planner estimate the planner’s performance conditioned
on the macro action set generated by the actor. However,

RMAG proposes a novel actor architecture, based on the
recurrent neural network, to generate the candidate macro
actions that exploits environment information. Specifically,
RMAG builds a latent representation of the problem instance
based on current beliefs and observations, and progressively
infer a macro action set. Empirical evaluation in four en-
vironments with different underlying dynamics indicate the
efficacy of this actor architecture: The policy generated by
RMAG consistently and significantly outperforms other base-
lines, including those generated by state-of-the-art MAGIC
[1], by up to 190%. Ablation studies are carried out to
understand the impact of the recurrence module in RMAG.

II. BACKGROUND

A. POMDP Formulations

A POMDP [16], [17] is a tuple ⟨S,A,O, T ,Z,R⟩. The
first three element, S, A and O, denote the state space,
the action space and the observation space respectively.
The last three elements in the tuple are functions, where
T (s, a, s′) = p(s′|s, a) is the state transition function,
Z(s′, a, o) = p(o|s′, a) is the probability of receiving an
observation given the new state and the current action, and
finally the reward function, R(s, a), is the reward obtained
for a given action at a given state.

Due to uncertainty in the transition and observation func-
tions, a POMDP agent only has partial observability of its
states. To capture this partial observability, at each time step,
the agent maintains a belief b ∈ B, which is a distribution
over the state space S. Here, B denotes the belief space,
which is the set of all possible distributions over the state
space S . The best action to perform is then inferred with
respect to beliefs. The solution to a POMDP problem is a
policy π : B → A that maximises the value function:

V ∗(b) = max
a∈A

{
R(b, a) + γ

∑
o∈O

P (o|b, a)V ∗(b′)

}
(1)

Here γ is a discount factor that discount future rewards and
b′ denotes the updated belief according to the Bayes’s rule,

b′ =
Z(s′, a, o)

∑
s′∈S T (s, a, s

′)b∑
s′′∈S Z(s

′′, a, o)
∑
s∈S T (s, a, s

′′)b
(2)

We refer the reader to [3] for a comprehensive survey on
various recent approximate methods for solving POMDPs.

B. Planning with Macro Actions

Despite advances in approximate POMDP solving, com-
puting a good policy for problems that require long planning
horizon remains difficult. An approach to reduce the effective
planning horizon, and hence ease the computation burden,
is to use macro actions. A macro action is a sequence of
primitive actions and can be represented as [a1, . . . , an],
where ai ∈ A and n is the length of the macro-action.
Constructing a small set of useful macro-actions is difficult
because the number of different macro-actions increases
combinatorially with the length of the macro-action n.

Various methods are proposed to generate a small set of
macro-actions. For instance, a number of works enforce each

macro action to reach an explicitly defined sub-goals, sub-
regions or landmarks [7], [18]–[21]. In [22], macro actions
are used to obtain abstract hierarchies and planning can be
carried out efficiently in abstract state space. Macro actions
can also be generated according the value of information
[9]. MAGIC [1] uses the actor critic method to learn and
generate a set of candidate macro actions used by the
DESPOT planner to search for the best macro action to
take. 2D Bezier curves and turn-and-go curves are used
to parameterise the macro actions. The former is used for
holonomic robots whereas the later is for non-holonomic
robots. A 2D quadratic Bezier curve is controlled by three
points {p1,p2,p3} based on the given formula [23],

p(u) = (1− u)2p0 + 2u(1− u)p1 + u2p2 (3)

Here u is called the parametric variable and 0 ≤ u ≤ 1. A
turn-and-go curve is controlled by two real parameters, speed
and steer. Speed is the speed used across the entire trajectory
and the steer is the steering angle used in the first half of the
trajectory where the second half is always set to 0. During
simulation these curves are discretised into a sequence of
primitive actions and hence forming a single macro action.
In this paper, we follow the overall structure of MAGIC, but
proposes a new method to generate situational aware macro
actions that aims to maximise the planner’s performances.

C. Deep Learning for POMDPs

Many deep neural networks have been proposed to learn
various components of a POMDP. One paradigm is the
end-to-end learning, where a single deep neural network is
used to approximate the entire POMDP [13], [24], [25]. For
instance, [24] proposed the QMDP net that embed solution
structure into a neural network that is trained end-to-end to
predict the best action to take. In contrast, separate modules
can be learned to predict state transition or observation
likelihood functions [26]–[28]. These functions can be used
as a generative model for a planner to perform forward
simulation and search for an optimal action to take according
to Equation 1. We adopt the second approach and propose
a Long Short Term Memory (LSTM) based model to learn
suitable macro-actions. Details of RNN can be found in [29].
The method we propose in this paper can by viewed as a type
of Actor Critic framework [30], in which a critic is used to
guide an actor to learn policies.

III. METHODS

A. Overview

Key to RMAG is an RNN architecture that can generate
the set of suitable candidate macro-actions, taking into ac-
count environment information. This generation process is
performed in two stages. First, it learns a compact latent
representation of the environment instance based on partial
information and observation. Specifically, given current en-
vironment information, ξ, RMAG learns a stochastic latent
representation h of the problem, denoted as p(h | ξ). Since
the shape of the macro action depends on the initial condition
and subsequent primitive actions, in the second stage RMAG

𝑏!

𝑏"

MLP
1,1 𝜎 MLP

1, U 𝜎

MLP
K, 1 𝜎 MLP

K, U 𝜎

Mean

c

Preprocess

MLP
1

MLP
2

𝜎 MLP
𝐿

𝜎

LSTM
1,1

LSTM
	𝐷,1

MLP 𝑀

Encoder Decoder

LSTM
1,T

LSTM
𝐷,T

Latent
Representation

Recurrent
Generation

Fig. 2: The generator network with three channels, a pre-processor, an encoder and a decoder, each shown in a different
colour. σ are arbitrary activation functions. The stacked LSTM is shown in an unrolled fashion where sequence dimension
is shown horizontally and layer dimension is shown vertically. L denotes the number of MLP layers in the encoder, D
represents the number of layers in the LSTM decoder and T denotes the sequence length.

uses an RNN to infer a suitable set of candidate macro
actions, denoted as M . Details of this generator is presented
in the next subsection.

The generated set of candidate macro-actions M will
then be evaluated and progressively improved. RMAG can
use any methods of evaluation and improvements of the
set of candidate macro-actions. However, in this paper, the
evaluation and improvements of the set of candidate policies
in RMAG follow those of MAGIC [1], which relies on a
critic network and a POMDP planner (the overall structure
of RMAG is illustrated in Fig. 1). A POMDP planner that
searches with macro action, instead of primitive actions,
is utilised to find the best macro action to take from M
according to the modified Bellman update equation:

V ∗(b) = max
m∈M

{
R(b,m) + γL

∑
ω∈Ω

P (ω|b,m)V ∗(b′)

}
(4)

where L = |M | is the size of the macro action set; P (ω |
b,m) =

∏L
i=1 p(oi | bi−1, ai) is the probability of observing

a macro observations (a sequence of observations in which
each observation is generated by the corresponding primitive
action) conditioned on the belief and macro actions; and
R(b,m) =

∑L
i=1 γ

i−1R(bi−1, ai) is the cumulative reward
after executing a macro action m ∈ M . A critic model V̂ψ ,
parameterised by ψ, is used to predict the planner’s value
and maximise the following objective:

J(ψ) = Eξ,M,v∼D [log pψ(v)] (5)

Here pψ(v) is the probability density function of V̂ψ . The
environment information ξ, the macro action set M and the
planner value v are sampled from a replay buffer. And the
objective of RMAG (denoted as Gθ), parameterised by θ,
is to generate a set of macro actions that maximises the
objective:

J(θ) = Eξ∼D
[
EM [E[V̂ψ(ξ,M)]] + αH(Gθ(ξ))

]
(6)

Where αH(Gθ(b, c)) is the entropy regularisation term for
controlling exploration by adjusting the positive scaler α
according to [31]. Note that Equation 6 is made differentiable
via the re-parameterisation trick for training [1].

B. The Generator Architectures

Let us now discuss the architecture of RMAG’s candidate
macro-actions generator. This generator consists of three
neural network components that are trained end-to-end. It
is illustrated in Fig. 2 and can be described as:

Gθ(b, c) = decode ◦ encode ◦ preprocess(b, c) (7)

where preprocess, encode, and decode are the three neural
network components and described below.

Similar to MAGIC [1], RMAG first performs a pre-
processing of the environment information. RMAG architec-
ture for this particular pre-processing component is similar
to that of MAGIC, in the sense that RMAG projects ξ
that contains the belief particles [b1, . . . , bk] and environ-
ment context c to a hyperspace ξ̂ ∈ RW via the function
preprocess : Rdim(S) × RC 7→ RW , where dim(S) is
the dimension of the state space S (same dimension as a
belief particle), C is the dimension of the context vector,
and W > dim(S) is the desired hyperspace dimension. The
function itself is defined as:

preprocess(b, c) =
1

K

K∑
i=1

σ(MLPiU . . . (σ(MLPi1(bi))))⊕c

(8)
where c is the context vector, K is the number of particles
representing belief b and u is the number of layers of
MLPs as displayed in Figure 2. Intuitively, this function
takes the mean of the belief particles and concatenate them
with the environment context vector, to provide an aggregate
information about important features of the environment that
resides in a high dimension such that a latent representation
can be extracted in the next stage.

(a) Light Dark (b) Navigation 2D (c) Drive Hard (d) Puck Push

Fig. 3: Visualisation of the four experiments. (a) The Light Dark Environment: blue circle represents belief particles; coloured
curves are macro actions produced by RMAG; light is represented by the white strip and crosses are initial and goal positions.
(b) The Navigation2D Environment: the agent is represented as a blue circle; coloured curves are current macro actions;
areas covered by beacons are represented by orange circles; blue rectangles are walls and red areas are danger zones. (c)
The Drive Hard Environment: the ego-agent is coloured in blue and exo-vechiles are coloured in red; the orange path is the
intended path followed by the agent. (d) The Puck Push Environment: The puck is represented as the red circle; covered
zones where no observation can happen are shown as yellow strips; and goal region is shown as the green circle.

The second component, which is an encoder, encode :
RW 7→ RZ , learns the stochastic model P (h | ξ̂) and outputs
samples of the latent representation of the environment
instance h ∈ RZ , where Z < W . The encoder is formed by
a stacked of MLPs, in which the output dimension of each
layer decreases monotonically and the output dimension of
the last layer is Z, i.e.,

encode(ξ̂) = σ(MLPL(. . . σ(MLP1(x)))) (9)

l is the the number of layers in the encoder network, and σ
denotes arbitrary activation functions. With a compact latent
representation, we can invoke the recurrence module next to
generate macro actions.

The third component of the generator is a recurrent de-
coder. Once a latent environment representation is obtained,
RMAG uses a stacked LSTM followed by a MLP to learn
and sequentially produce a suitable set of candidate macro
actions. The latent problem instance h is passed through
multiple layers of LSTMs, where each LSTM aims to build
progressively more complex macro action set conditioned
on previous layer outputs. One can view this stage as a
decoder modelled as P (M | h). Concretely, we formulate
this as, decode(x) : RZ 7→ Rdim(J), where dim(J) is the
dimension of the parameter space of the macro action set
M .

decode(x) = MLP(LSTMD ◦ · · · ◦ LSTM1(x)) (10)

where the final LSTM is post-processed by MLPs to produce
the set of candidate macro-actions for planning, M .

IV. EXPERIMENTS

We perform experiments in simulation to understand the
performance of RMAG’s proposed candidate macro-actions
generator and the effects of LSTM’s depth to the perfor-
mance. For this purpose, we compare RMAG with four
different methods. First is POMCPOW [32] that computes

the policy using primitive one-step actions (i.e. maco action
size equals to 1). The second comparator is Handcrafted
that uses predefined macro actions to search. The third
comparator is MAGIC [1] that uses macro actions learned
by a residual network to plan. Since the results of MAGIC
published in their paper are different from the results of the
published code ran on our machine, we include both results
for fair comparisons. The last comparator is a base-line we
designed to understand the effect of LSTM channels. We
call this comparator Macro Action Encoder (MAE), which
is similar to RMAG except that the candidate macro actions
set is inferred straight away from the encoded environment
via a single perceptron layer without passing through the
recurrent stage. In other words, MAE performs the same
preprocess and encoding stage as RMAG (see Figure 2) but
the decoding stage contains only the MLP layer without any
recurrence.

A. Scenarios used in Experiments

RMAG and each of the above comparators are tested on
four environments with different complexities are used to
test the generator. Three of these environments, Light Dark,
Drive Hard and Puck Push come from the bench marking
problems used in [1]. We further design another problem,
Navigation 2D, that has larger map sizes and more complex
uncertainties and dynamics to fully exploit our method’s
capability.

1) The Light Dark Environment: The first environment,
see Figure 3a, simulates the problem of navigating a holo-
nomic robot in a dark room. The room is 8 by 8 units wide
and each discretised action is 0.5 units. The agent randomly
starts at a position that is constrained to be far away from the
light. The exact position is unknown to the agent and instead
an initial belief is given according to the POMDP framework.
Each primitive action has a cost of −0.1. The agent receives
no observations unless it reaches the light position, in which

0 1 2 3 4 5
Iterations 1e5

−100

−75

−50

−25

0

25

50

75

100

Tr
ai

ni
ng

 R
ew

ar
ds

MAGIC
MAE
RMAG

(a) Light Dark

0 1 2 3 4 5
Iterations 1e5

−40

−30

−20

−10

0

10

20

30

40

Tr
ai

ni
ng

 R
ew

ar
ds

MAGIC
MAE
RMAG

(b) Navigation 2D

0 1 2 3 4 5
Iterations 1e5

0

20

40

60

80

100

Tr
ai

ni
ng

 R
ew

ar
ds

MAGIC
MAE
RMAG

(c) Drive Hard

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

−100

−75

−50

−25

0

25

50

75

100

Tr
ai

ni
ng

 R
ew

ar
ds

MAGIC
MAE
RMAG

(d) Puck Push

Fig. 4: Training plots of different methods over all iterations.

TABLE I: Performance comparisons. The MAGIC (git) row refers to the results running on our machine. RMAG LSTM
stack size is fixed to be 2 for a fair comparison. Action length refers to the number of actions in a macro action.

Light Dark Environment Navigation 2D Environment

Methods Action
Length

Steps
Taken

Cumulative
Reward

Success
Rate %

Action
Length

Steps
Taken

Cumulative
Reward

Collision
Rate %

POMCPOW 1 22.1 (0.4) -90.7 (0.5) 6.2 (0.3) 1 146.6 (0.55) -28.1 (1.1) 4.3 (0.7)
Handcrafted 8 44.7 (0.1) -30.9 (1.0) 37.1 (0.5) 16 134.8 (0.43) 2.81 (1.1) 12.6 (0.52)
MAGIC 8 37.6 (0.1) 54.1 (1.0) 79.0 (0.5) 16 129.2 (0.93) 5.70 (2.3) 15.4 (1.1)
MAGIC (git) 8 37.7 (0.26) 67.0 (2.2) 85.4 (1.1) N/A N/A N/A N/A
MAE 8 35.3 (0.19) 80.9 (1.7) 92.2 (0.85) 16 129.1 (0.9) 7.4 (2.3) 15.1 (1.2)
RMAG 8 35.7 (0.19) 78.3 (1.8) 90.9 (0.91) 16 128.6 (0.9) 16.0 (2.2) 10.9 (0.93)

Drive Hard Environment Puck Push Environment

Methods Action
Length

Distance
Covered

Cumulative
Reward

Stall
Rate %

Action
Length

Steps
Taken

Cumulative
Reward

Success
Rate %

POMCPOW 1 70.4 (1.0) -44.7 (1.0) 13.0 (0.001) 1 31.0 (1.7) -94.1 (1.0) 7.6 (0.5)
Handcrafted 3 98.1 (1.0) 13.1 (2.0) 9.9 (0.001) 5 42.1 (0.6) 34.0 (2.0) 70.0 (1.0)
MAGIC 3 111.0 (1.0) 58.6 (2.0) 6.9 (0.001) 5 35.3 (0.1) 87.9 (1.0) 95.3 (0.5)
MAGIC (git) 3 119.2 (1.4) 64.8 (2.4) 6.2 (0.0007) 5 40.4 (0.68) 73.1 (2.0) 88.9 (0.6)
MAE 3 113.5 (1.4) 59.3 (2.6) 6.2 (0.001) 5 129.1 (0.9) 7.43 (2.3) 15.4 (0.011)
RMAG 3 113.8 (1.4) 65.6 (2.4) 5.8 (0.0006) 5 30.9 (0.37) 92.5 (0.95) 97.8 (0.0046)

case it can fully observe its position. The objective is to
stop precisely at a randomly selected goal position in the
map, in which a reward of 100 will be given. However, the
maximum step size is 60 and the episode terminates with
cost of -100 if the agent has not reached the goal position
after 60 steps. The discount factor is set to γ = 0.98. Clearly,
a wise path would be to navigate to the light to localise and
navigate towards the goal position afterwards. Hence, solving
the problem optimally requires long horizon reasoning.

The actions are represented by 2D Bezier curves and each
macro action is set to be of size 8. A total of 100 belief
particles encoding the possible locations of the agent are
drawn from the belief distribution. These belief particles
along with a context vector that stores the goal and light
positions are given to the learning model. During training or
testing, the light position is uniformly drawn from the x-axis
and its width doesn’t change. The starting and end positions
are drawn uniformly while being far away from the light.

2) The Navigation2D Environment: The Navigation2D
environment (see Figure 3b) mimics the problem used in
[7]. The map size is increased from 8 by 8 units to 60 by
60 units with each action takes 1 unit in length. There are
two initial starting positions on the far left of the map, but
the agent does not know where it starts and hence its initial
belief scatters around two initial positions (this breaks the
Gaussian property of beliefs in other scenarios). The goal
position is restricted to be on the right half of the map where

walls and danger zones are placed in between the initial
position and the goal positions. The environment requires
the agent to learn to take advantages of surrounding objects
(walls and beacons) to localise and robustly reach the goal.
There is no penalty given to the agent when bumping into the
wall, however, upon entering the danger zone, the episodes
terminates immediately and the agent receives a -100 penalty.
Beacons are placed randomly on the map and the agent can
completely localise itself when positioned within a certain
distance from a beacon ; if the agent is farther than this
distance, the agent receives no observation. The step penalty
is set to −0.2, the goal reward is 100, the discount factor is
set to 0.99. Since the map size is larger than that of Light
Dark, the maximum step size is increased to 150 and similar
to the previous problem, a penalty of -100 will be given to
the agent if it does not completes the problem within the
given number of step sizes.

Each action is represented by 2D Bezier curve and each
macro action is set to be of size 16 to reflect the increase in
the map size comparing to Light Dark. The context vector
encodes the wall positions, light positions and goal positions.
The walls, danger zones and two starting initial positions
are fixed during training or testing. 7 beacons are randomly
chosen from a pool of 20 beacons without replacement (a
total of 77520 possibilities). And the goal positions are
randomly drawn to be at the far right of the map.

3) The Drive Hard Environment: In this environment (see
Figure 3c), the agent needs to control a non-holonomic
vehicle to cross heavy traffic intersections while following
a pre-determined path. The map size is irrelevant to the
planning horizon of the problem as the agent’s speed is
controlled by accelerations. A total of 150 steps are allowed
to execute in one episode and a penalty of -100 is given if
the ego-vehicle collides with any exo-vehicles. At each step,
a scaled penalty that depends on the current speed of the
ego-vehicle is given and the agent receives a reward that is
equal to the amount of path followed so far. The agent is
able to observe the pose and velocity of all vehicles but not
their intentions. It can also observes it own target path. The
intentions of exo-vehicles are modelled by [33].

Due to motion noises and changing traffic conditions, a
macro action size of 3 is used in this environment. A list
of speed and steer commands (i.e. turn-and-go curves) are
used to represent macro actions in this environment. The
maximum speed, steer and acceleration of the target vehicle
are constrained to be 6m/s, 15◦ and 3m/s2, and that of other
exo-vehicles are constrained to be 4m/s, 15◦ and 2m/s2.
During training or testing, all vehicles are spawned randomly
on the map with their own target paths to traverse across an
intersection.

4) The Puck Push Environment: In this environment (see
Figure 3d), a holonomic circular robot is controlled by the
agent to push a round puck to a desired location. The motion
of the robot cause sliding motion of the puck in the 2D
workspace. The sliding motion is modelled by θ′ = θeµd

where θ is the direction of the puck in robot’s frame,
d is the distance robot moved and µ is the sliding rate
coefficient. Part of the workspace is covered up such that the
agent receives no information about any objects that’s within
the covers. When outside of the cover, the agent receives
noisy observations with 90% chance, and no observations
otherwise. Each step costs -0.1 penalty and a reward of 100
is given when the robot successfully delivers the puck and
-100 penalty is given when the robot exhausts allowed step
sizes (100) in an episode. The key challenge is to navigate
around the puck to re-push it when the puck slides away
from the agent.

A macro action size of 5 is chosen for this environment
with each action parameterised by 2D Bezier curves. For
each episode, the goal region is drawn randomly at the far
right of the map and other object’s positions are fixed as
shown in the Figure.

B. Experimental Setup

All learning methods are implemented using Python, while
the planner and simulator are implemented using C++. For
fair comparisons, we choose the same critic architecture and
planner (MACRO-DESPOT) used in [1]. We also use the
same number of LSTM stack sizes (i.e. 2) in RMAG for all
environments. The impact of different stack sizes is further
studied in Section IV-D. Online learning is adopted where
the collected experiences is stored in a replay buffer. 16
sub-processes running in parallel on an Intel-i7 are used to

simulate and collect experiences. To facilitate the learning
speed, the replay buffer is stored on the graphics card with
a maximum size of 100,000 samples. When the max size is
reached, the new sample will be used to replace the oldest
one. All trainings are performed on a single NVIDIA 4080.
Upon training, 256 samples will be drawn from the replay
buffer uniformly and these samples form a single batch to
train the networks. To ensure there is a rich data set in
the beginning, 10,000 random simulations are collected with
randomly generated macro actions. For all the environments,
the initial learning rate is set to 1e−4 and Adam optimiser is
used. At test time, the critic is discarded and 500,000 random
simulations are ran to obtain benchmark results. Since our
domains are continuous and objects are drawn uniformly,
we expect most of scenarios are novel to the agent during
evaluation.

C. Experimental Results

The learning plots of the different methods and perfor-
mance comparisons of these methods on the four testing
scenarios are presented in Fig. 4. We noticed sometimes
RMAG is unstable during training. The issue mainly come
from the addition of recurrences in the model [29], [34].
Once trained, the mean (and standard errors) of the evalu-
ation results are presented in Table I. In all four scenarios,
RMAG substantially outperforms other methods, in terms of
expected total reward and other qualitative measures, such
as success rate.

1) The Light Dark Environment: Figure 4a displays the
training results of the three learning methods. Since this task
is the simplest in terms of environment complexity among
the four scenarios, the training plots are similar to each
other. However, RMAG generalise better during evaluation as
shown in Table I. Our method performs at least 15% better
than other methods in terms of cumulative rewards and at
least 7% better in terms of success rate.

2) The Navigation 2D Environment: The high fluctuation
of rewards in training is likely due to the complex dynamics
of the environment. Based on Table I, MAGIC and MAE
are able to reach the goal when the beacons are uniformly
scattered across the map, however, these two methods are
often stuck when the nearest beacon is far away from the
initial position or there is a large gap between the beacons.
RMAG, on the other hand, can easily navigate under more
uncertain situations and precisely use nearby beacons to
localise itself before finding its way to the target. Hence,
it performs roughly three times better than MAGIC while
minimising the chance of entering danger zones.

3) The Drive Hard Environment: Three methods exhibit
similar learning plots as shown in Figure 4c. Since the macro
action size is small, compared to other environments and
potential errors can be constantly checked at each layer
of search, adding memory module in the model do not
significantly impact the quality of macro actions, therefore,
RMAG only outperforms other methods by a small portion
as shown in Table I. Nevertheless, this demonstrates that

TABLE II: Ablation study on the number of LSTM layers of RMAG for each environment

Light Dark Navigation 2D Drive Hard Puck Push
LSTM
Layers (D)

Cumulative
Rewards

Success
Rate %

Cumulative
Rewards

Success
Rate %

Cumulative
Rewards

Success
Rate %

Cumulative
Rewards

Success
Rate %

0 (MAE) 80.9 (1.7) 92.2 (0.85) 7.42 (2.3) 83.4 (1.2) 59.34 (2.6) 78.1 (1.3) 92.2 (0.97) 97.7 (0.47)
2 78.3 (1.8) 90.1 (0.91) 16.0 (2.2) 89.9 (0.99) 65.6 (2.4) 82.6 (1.3) 92.5 (0.95) 97.8 (0.46)
4 77.6 (1.9) 90.6 (0.92) 16.0 (2.2) 88.9 (0.99) 61.0 (2.4) 80.6 (1.3) 51.9 (2.6) 78.9 (1.3)
6 83.8 (1.5) 93.7 (0.77) 18.1 (2.3) 86.8 (1.1) 61.8 (2.7) 76.7 (1.2) 75.9 (1.9) 90.3 (1.00)
8 58.1 (2.5) 81.2 (1.2) 21.6 (2.1) 90.4 (0.93) 41.2 (3.1) 64.5 (1.5) 58.7 (2.5) 82.3 (1.2)

RMAG has a robust learning capability even in situations
that do not heavily require long-short term memory.

4) The Puck Push Environment: Since the puck gets
stuck when it is near the wall and its position is unknown
when hidden under the cover, the agent needs to plan its
action based on previous sequence of actions and considers
interacting with the puck carefully such that the puck can
be delivered easily in future steps. Therefore, an LSTM in
RMAG greatly benefits the learning of the agent as seen in
Figure 4d. RMAG not only learns faster than other methods,
but also reaches more rewards during evaluation. As a result,
it performs superior than other methods with a 97.8% success
rate.

D. Ablation Study

The depth of the LSTM channel in RMAG influence its
performance in different environments. Table II displays the
benchmark results of RMAG with different LSTM depths for
each environment while keeping other parameters the same.
Note that 0 stack size refers to the MAE architecture. For
Light Dark and Puck Push, the MAE structure performed
nearly as good as the best results, which shows the impor-
tance of building a latent representation for the inference of
macro actions. However, MAE did not outperform RMAG
in any of the environments, as the recurrence module is able
to progressively build more quality macro action sets in a
given situation. Furthermore, greater stack size works better
in Light Dark and Navigation 2D environment as shown in
Table II. This is linked to the fact that these environments
use a bigger macro action length comparing to the Drive
Hard and Puck Push environment (see Table I), which require
greater model complexities.

We further list architecture complexities in terms of num-
ber of parameters, parameter memory size and multiply
accumulates (MACs) conditioned on a fixed input size in
Table III. RMAG with stack size less than 6 has fewer param-
eters and consume less memory and computation resources
comparing to MAGIC. Since MAE is a simplified version of
RMAG, it hence enjoys the lightest architecture.

V. CONCLUSIONS

In this paper, we propose a candidate macro-actions gen-
erator that can exploit environment information, based on
RNN. This architecture is then combined with the critic and
planner components of MAGIC to provide an progressive im-
provement of the set of macro-actions for POMDP planning.
Comparison with state-of-the-art, including MAGIC, on four
different long horizon planning tasks with various difficulties

TABLE III: Model Complexities Conditioned on Fixed Input
Sizes

Input
Dimension

of
Param

Memory
(MB)

MACs
(M)

MAGIC (1x3, 1x300) 1,804,600 7.22 1.80
MAE (1x3, 1x300) 371,192 1.48 0.37
RMAG-2 (1x3, 1x300) 387,032 1.55 0.91
RMAG-4 (1x3, 1x300) 403,928 1.62 1.45
RMAG-6 (1x3, 1x300) 420,824 1.68 1.99
RMAG-8 (1x3, 1x300) 437,720 1.75 2.53

indicate that the proposed architecture outperforms existing
method and architecture in solving problems with long
planning horizon. It also enjoys a lighter computational
complexity while maintaining a high generality comparing to
the generator used in MAGIC. Further understanding on how
environment information can be exploited to construct simple
learning components that help improve planning scalability
could be very useful.

REFERENCES

[1] Y. Lee, P. Cai, and D. Hsu, “Magic: Learning macro-actions for online
pomdp planning,” arXiv preprint arXiv:2011.03813, 2020.

[2] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441–450, 1987.

[3] H. Kurniawati, “Partially observable markov decision processes and
robotics,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 5, pp. 253–277, 2022.

[4] G. Theocharous and L. Kaelbling, “Approximate planning in pomdps
with macro-actions,” Advances in Neural Information Processing
Systems, vol. 16, pp. 775–782, 2003.

[5] R. He, E. Brunskill, and N. Roy, “PUMA: Planning under uncertainty
with macro-actions,” in AAAI, 2010.

[6] Z. W. Lim, D. Hsu, and W. S. Lee, “Monte carlo value iteration with
macro-actions.” in NIPS, 2011, pp. 1287–1295.

[7] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning under
uncertainty for robotic tasks with long time horizons,” IJRR, vol. 30,
no. 3, pp. 308–323, 2011.

[8] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” IJRR, vol. 33, no. 2, pp. 268–304, 2014.

[9] G. Flaspohler, N. A. Roy, and J. W. Fisher III, “Belief-dependent
macro-action discovery in pomdps using the value of information,”
Advances in Neural Information Processing Systems, vol. 33, pp.
11 108–11 118, 2020.

[10] A. Plaat, W. Kosters, and M. Preuss, “Model-based deep reinforcement
learning for high-dimensional problems, a survey,” arXiv preprint
arXiv:2008.05598, 2020.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279–292, 1992.

[12] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “Viola: Imitation learning for
vision-based manipulation with object proposal priors,” arXiv preprint
arXiv:2210.11339, 2022.

[13] J. Oh, S. Singh, and H. Lee, “Value prediction network,” Advances in
neural information processing systems, vol. 30, 2017.

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[15] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song, “Learning to stop while
learning to predict,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1520–1530.

[16] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[17] E. J. Sondik, “The optimal control of partially observable markov
processes,” Ph.D. dissertation, Stanford University, 1971.

[18] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” 2001.

[19] M. Stolle and D. Precup, “Learning options in reinforcement learn-
ing,” in International Symposium on abstraction, reformulation, and
approximation. Springer, 2002, pp. 212–223.

[20] S. Mannor, I. Menache, A. Hoze, and U. Klein, “Dynamic abstraction
in reinforcement learning via clustering,” in Proceedings of the twenty-
first international conference on Machine learning, 2004, p. 71.

[21] T. A. Mann, S. Mannor, and D. Precup, “Approximate value iteration
with temporally extended actions,” Journal of Artificial Intelligence
Research, vol. 53, pp. 375–438, 2015.

[22] G. Konidaris, “Constructing abstraction hierarchies using a skill-
symbol loop,” in IJCAI: proceedings of the conference, vol. 2016.
NIH Public Access, 2016, p. 1648.

[23] M. E. Mortenson, Mathematics for computer graphics applications.
Industrial Press Inc., 1999.

[24] P. Karkus, D. Hsu, and W. S. Lee, “Qmdp-net: Deep learning for
planning under partial observability,” Advances in neural information
processing systems, vol. 30, 2017.

[25] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, pp. 15 084–15 097, 2021.

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” NeurIPS, vol. 31, 2018.

[27] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,”
Advances in neural information processing systems, vol. 28, 2015.

[28] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in ICRA. IEEE, 2017, pp. 2786–2793.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[31] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[32] Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with
continuous state, action, and observation spaces,” in ICAPS, vol. 28,
2018, pp. 259–263.

[33] Y. Luo, P. Cai, D. Hsu, and W. S. Lee, “Gamma: A general agent
motion prediction model for autonomous driving,” arXiv preprint
arXiv:1906.01566, 2019.

[34] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn)
and long short-term memory (lstm) network,” Physica D: Nonlinear
Phenomena, vol. 404, p. 132306, 2020.

