
An Online POMDP Solver for Uncertainty
Planning in Dynamic Environment

Hanna Kurniawati and Vinay Yadav

Abstract Motion planning under uncertainty is important for reliable robot opera-
tions in uncertain and dynamic environments. Partially Observable Markov Deci-
sion Process (POMDP) is a general and systematic framework for motion planning
under uncertainty. To cope with dynamic environment well, we often need to modify
the POMDP model during runtime. However, despite recent tremendous advances
in POMDP planning, most solvers are not fast enough to generate a good solu-
tion when the POMDP model changes during runtime. Recent progress in online
POMDP solvers have shown promising results. However, most online solvers are
based on replanning, which recompute a solution from scratch at each step, discard-
ing any solution that has been computed so far, and hence wasting valuable com-
putational resources. In this paper, we propose a new online POMDP solver, called
Adaptive Belief Tree (ABT), that can reuse and improve existing solution, and up-
date the solution as needed whenever the POMDP model changes. Given enough
time, ABT converges to the optimal solution of the current POMDP model in prob-
ability. Preliminary results on three distinct robotics tasks in dynamic environments
are promising. In all test scenarios, ABT generates similar or better solutions faster
than the fastest online POMDP solver today; using an average of less than 50 mil-
liseconds of computation time per step.

1 Introduction
Motion planning under uncertainty is important for reliable robot operation in im-
perfectly known and dynamic environments. Partially Observable Markov Decision
Process (POMDP) is a general and systematic framework for planning under uncer-
tainty. Motion planning under uncertainty problems can be modelled as POMDPs
quite naturally. However, solving a POMDP problem exactly is computationally
intractable [16]. A lot of effort and tremendous progress have been made in devel-
oping efficient approximate POMDP solvers [4, 7, 8, 13, 17, 18, 21, 23], such that
today, we have POMDP solvers that can solve simple to moderately difficult mo-
tion planning problems within seconds to minutes [9, 10, 12]. However, many of
these solvers are not efficient enough to recompute or update its solution when the

Hanna Kurniawati (e-mail: hannakur@uq.edu.au)
Robotics Design Laboratory, School of Information Technology and Electrical Engineering,
University of Queensland, Australia.

Vinay Yadav (e-mail: vinayyadav.iitkgp@gmail.com)
Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India.
All work were done while the author was an internship student at University of Queensland.

1

2 Hanna Kurniawati and Vinay Yadav

POMDP model changes during runtime. Such changes in the POMDP model are
often required when a robot operates in dynamic environment. This paper proposes
a new approximate POMDP solver that improves and updates its solution online,
following changes in the environment.

In imperfectly known and dynamic environment, a robot rarely knows its exact
state due to errors in control and sensing. POMDP provides a systematic way to rea-
son about the best action to perform when perfect state information is unavailable. It
finds the best action with respect to the set of states that are consistent with the avail-
able information so far. The set of states is represented as a probability distribution,
called a belief b, and the set of all possible beliefs is called the belief space B. A
POMDP solver calculates an optimal policy π∗ : B→ A that maps a belief in B to an
action in the set A of all possible actions the robot can perform, so as to maximize a
given objective function. An offline POMDP solver computes this mapping prior to
execution, while an online POMDP solver computes the mapping during runtime.

Methods that use POMDP framework to solve planning in imperfectly known
and dynamic environment can be classified into two approaches. The first approach
embeds all possible environments and their dynamics as part of the POMDP model.
It uses an offline POMDP solver to find a good policy, prior to execution. When
the environment and its dynamics are largely unknown, this approach constructs
POMDP models too huge to be solved by even the best offline solver today.

The second approach models only the known part of the environment and its
dynamics (both stochastic and deterministic), and allows the model to change during
execution when more information about the environment becomes available. Key to
the success of this approach is an efficient online POMDP solver that can compute
a good policy during runtime, following changes in the POMDP model.

Online POMDP solvers have advanced significantly over the past few years [7,
8, 20, 21]. However, most of these solvers [7, 8, 20] are based on replanning, which
recompute the best action to perform from scratch at each step, discarding any policy
that has been computed so far. As a result, these solvers often waste significant
computational resources when changes happen gradually or only to some part of
the environment, which are often the case in robotics tasks.

This paper proposes a new online POMDP solver, called Adaptive Belief Tree
(ABT), that reuses and improves existing policy at each time step, and update the
policy as needed whenever the POMDP model changes. To enable fast policy up-
date, ABT uses the following two observations. First, a change in the POMDP model
is directly reflected as a change in the robot’s behaviour at a particular set of states.
Second, a change in one optimal mapping π∗(b) from a belief b, may affect the
optimal policy π∗(.) at other beliefs that can reach b. Using insight from these ob-
servations, ABT represents the policy as pairs of belief and action, and explicitly
represents the relation between beliefs, states, and their reachability information, so
that it can quickly identify subset of the policy affected by changes in the POMDP
model and update the policy fast whenever necessary. To quickly generate a good
policy, ABT plans with respect to only a set of representative sampled beliefs. It rep-
resents each belief as a set of state particles, and samples a belief b by sampling a set
of state trajectories from a particle of the given initial belief b0. An effective strat-

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 3

egy for sampling state trajectories enables ABT to converge to an optimal policy in
probability, and quickly generate a good policy. Preliminary results on three distinct
robotics tasks in dynamic environment indicate that ABT can generate similar or
better motion strategies faster than the best online POMDP solver today [21]. In all
three test scenarios, ABT requires an average of less than 400 ms of preprocessing
time, and an average of less than 50 ms of online computation time per step.

Furthermore, ABT is designed for POMDP problems with continuous state space
and uses a generative model. A generative model is a black box simulator that en-
ables us to generate experiences about the system dynamic and behaviour at vari-
ous different states. By using a generative model, ABT does not need an explicit
model on control error, observation error, and uncertainty about the system dynam-
ics, which are often difficult to obtain in complex robotics tasks.

2 Related work

2.1 POMDP background
A POMDP is defined as a tuple 〈S,A,O,T,Z,R,b0,γ〉, where S is the set of states,
A is the set of actions, and O is the set of observations. At each step, the agent is
in a state s ∈ S, takes an action a ∈ A, moves from s to an end state s′ ∈ S, and
perceives an observation o∈O. Due to action uncertainty, the system dynamic from
s to s′ is represented as a conditional probability function T (s,a,s′) = f (s′|s,a).
Furthermore, due to sensing uncertainty, after performing action a and ends at state
s′, the observation that may be perceived by the agent is represented as a conditional
probability function Z(s′,a,o) = f (o|s′,a). At each step, the agent receives a reward
R(s,a), if it takes action a from state s. The agent’s goal is to choose a suitable
sequence of actions that will maximize its expected total reward, while the agent’s
initial belief is denoted as b0. When the sequence of actions has infinite length, we
specify a discount factor γ ∈ (0,1) so that the total reward is finite and the problem
is well defined.

In many problems with large state space, explicit representation of the condi-
tional probability functions T and Z may not be available. However, one can use a
generative model, which is a black box simulator that outputs an observation per-
ceived, reward received, and next state visited when the agent performs the input
action from the input state.

A POMDP planner computes an optimal policy that maximizes the agent’s ex-
pected total reward. A POMDP policy π : B → A assigns an action a to each
belief b ∈ B. A policy π induces a value function V (b,π) which specifies the
expected total reward of executing policy π from belief b, and is computed as
V (b,π) = E[∑∞

t=0 γ tR(st ,at)|b,π]. A policy can be represented by various repre-
sentations, e.g., policy-graph [3] and pairs of belief and action [25]. However, most
online solvers do not maintain an explicit representation of the policy. Instead, they
calculate the mapping from beliefs to actions on the fly. In contrast, our proposed
online solver maintains an explicit representation of a subset of the policy, and im-
proves and updates the policy on the fly.

4 Hanna Kurniawati and Vinay Yadav

To execute a policy π , an agent executes action selection and belief update re-
peatedly. For example, if the agent’s current belief is b, it selects the action referred
to by a = π(b). After the agent performs action a and receives an observation o
according to the observation function Z, it updates b to a new belief b′ given by
b′(s′) = τ(b,a,o) = ηZ(s′,a,o)

∫
s∈S T (s,a,s′)ds where η is a normalization con-

stant. We use generative model and represents each belief with a set of particles.
The belief update is approximated using particle filter.

2.2 Related POMDP solvers
POMDP is a systematic and general approach for planning under uncertainty. Al-
though solving a POMDP exactly is computationally intractable [16], the past few
years have seen tremendous increase in the capability of both offline and online
POMDP solvers [13, 21, 23], such that POMDP approach is now practical for solv-
ing simple to moderately difficult motion planning problems.

The fastest offline POMDP solvers today are based on point-based approach [13,
17, 22, 23]. This approach reduces the complexity of planning in the belief space
B by representing B as a set of sampled beliefs and planning with respect to
this set only. To generate a policy, most point-based POMDPs use value iter-
ation, utilizing the fact that the optimal value function satisfies Bellman equa-
tion. They start from an initial policy, represented as a value function V . And
iteratively perform Bellman backup on V at the sampled beliefs, i.e., V (b) =
maxa∈A

(
R(b,a)+ γ ∑o∈O τ(b,a,o)V̂ ∗(τ(b,a,o))

)
where V̂ ∗(b′) is the current best

value of b′. The iteration is performed until it converges. Over the past few years,
impressive progress have been gained by improving the strategy for sampling
B [13, 23] and utilizing problem structures [15]. Different approaches have also
been proposed for restricted types of uncertainty, e.g., [4, 19] for Gaussian beliefs.

Many online solvers have been proposed too [20]. One of the fastest general
online POMDP solvers today is POMCP [21]. Starting from the current belief b,
POMCP performs best first search in the belief space. It samples action sequences to
quickly focuses on parts of the belief space that is most promising for generating the
optimal policy from b. As any sampling based method, the sampling strategy is cru-
cial. POMCP frames the problem of sampling the most promising action sequences
as a problem of balancing exploration and exploitation, often called multi-armed
bandit problem [24], and uses the Upper Confidence Bounds1 (UCB1) algorithm [1]
to select the actions. After POMCP finishes the search, it performs the best action,
updates the robot’s belief, and repeats the procedure until the goal is reached.

Aside from POMCP, various approaches have been proposed for online POMDP
solvers. PUMA [8] and RBSR [7] perform best first search in the belief space, just
as POMCP does. However, instead of solving a multi arm bandit problem, PUMA
and RBSR sample action sequences using heuristics in the state space, assuming
that states are fully observed after an action is performed. The work in [18] plans
with respect to only the most likely observation and then replan at each step. Recent
work, LQG-Obstacles [5] is very fast, but restricts the belief to be Gaussian and is
designed specifically for collision avoidance problems. Our new method is designed
as a general online POMDP solver and the beliefs can be any type of distribution.

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 5

When the POMDP model changes, in general, the above offline and online
solvers recompute the policy from scratch, wasting all computational effort that
have been performed so far. In contrast, our new solver ABT can reuse and improve
the policy, as well as update it as needed during runtime.

Recent work [14] has proposed a point-based method to modify a pre-computed
policy. However, the time it needs to update a policy is too slow to be practical
for dynamic environment, and the types of model changes that can be handled are
limited to changes in transition, observation, and reward functions. In contrast, our
new method can handle any types of changes in the model, and is fast enough to
update a policy online, as presented in Section 5.3.

3 Policy Representation
ABT’s policy representation must support fast identification on which parts of the
policy are affected by changes in the POMDP model, and must support fast update
of the policy. To this end, we note two observations. First, a change in any element
of the POMDP model can be identified from changes in the robot’s behaviour at a
particular set of states. By definition, any change in the state space can be identified
as addition, reduction, or changes in the types of a set of states. When the transition,
observation, or reward function changes, then in the long run, the results of perform-
ing an action, the observations perceived, or the reward the robot received at a set of
states would change. Therefore, changes in these functions can be identified from
changes in the robot’s behaviour at a particular set of states, too. Changes in action
and observation spaces will affect the transition and observation functions of a set of
states, and therefore these changes can be identified from the changes in the robot’s
behaviour at a particular set of states too. The second observation is a change in an
optimal policy π∗(b) from a belief b ∈ B may change the optimal policy π∗(.) from
other belief(s) that can reach b.

Utilizing the above observations, ABT represents the policy as pairs of belief
and action, and explicitly represents the relation between beliefs, states, and their
reachability information. This representation helps to quickly identify a subset of the
policy that needs to be updated, and to quickly update it. To maintain the relation,
ABT represents each belief as a set of state particles, and associates each belief b
with state trajectories that reach a particle of b from a particle of the given initial
belief b0. The details of the representation are below.

ABT maintains a set H of sampled episodes. An episode h ∈ H is a sequence of
quadruples (s,a,o,r) of state s ∈ S, action a ∈ A, observation o ∈ O, and immediate
reward r = R(s,a). To sample an episode h, ABT samples an initial state s0 ∈ S from
a given initial belief b0 and selects an action a0 ∈ A. The details of action selection
are discussed in Section 4.1. After an action a0 is selected, ABT calls the generative
model to sample an observation o0 ∈ O, an immediate reward r0, and a next state
s1 when the agent performs a0 at s0. ABT inserts the quadruple (s0,a0,o0,r0) as
the first element of h, and iteratively repeats the above steps starting from s1. The
iteration stops after either a terminal state is reached or h has exceeded a certain
length. As a last step, ABT inserts (s,–,–,r) as the last element of h, where s is the

6 Hanna Kurniawati and Vinay Yadav

next state sampled by the last call to the generative model and r = R(s) is the reward
of being at state s.

To maintain an explicit relation be-

(s0, a0, o0, r0)

(s1, a2, o2, r2)

...

...

(sn+1,−,−, rn+1)

b0
s0

a0

o0
s1

a1
o1
...

... ...

sn+1

h ∈ H T

...
...

Fig. 1 Illustration of an association between an
episode h ∈ H and path in the belief tree T .

tween beliefs, states, and their reacha-
bility information efficiently, ABT main-
tains a belief tree, denoted as T , and
associates it with the set of episodes in
H. Each node in T represents a belief.
For writing compactness, we refer to the
node and the belief it represents inter-
changeably. The root of T represents the
initial belief b0. Each edge bb′ in T is
labelled by a pair of action and obser-
vation a–o. An edge bb′ with label a–o
means that when a robot at belief b per-
forms action a and perceives observation

o, its next belief would be b′, i.e., b′ = τ(b,a,o) where b,b′ ∈ B, a ∈ A, and o ∈ O.
The paths in the belief tree T are associated with the episodes in H. Suppose φ

is a path in T and φ = 〈b0,a0,o0, . . . ,an,on,bn+1〉, where bi,bn+1 ∈ B, ai ∈ A, and
oi ∈O for i∈ [0,n]. Then, φ is associated with the set of episodes Hφ ⊆H which con-
sists of all episodes in H that contains 〈(s0,a0,o0,∗), . . . , (∗,an,on,∗),(∗,–,–,∗)〉,
where s0 is any state sampled from b0, ai and oi (i ∈ [0,n]) are the corresponding
actions and observations in φ , and ∗ means any relevant value. Figure 1 illustrates
the relation between an episode in H and a path in the belief tree T . Each episode
in H corresponds to exactly one path of T , but a path of T may be associated with
many episodes.

Each belief in T is represented by a set of particles, which comprises the states
in the corresponding quadruples of the corresponding episodes. Suppose b is a node
at level-l of T (the root has level 0). Suppose Φ(b) is the set of all paths in T
that starts from the root and contains the node b, and Hb =

⋃
φ∈Φ(b) Hφ . Then, b is

approximated with the set of particles {hl .s | h ∈ Hb}, which comprises the state in
the lth quadruple of each episode in Hb (the quadruples are indexed from 0).

The policy π of ABT is embedded in the belief tree T , with

π(b) = argmax
a∈A(E,b)

Q̂(b,a) (1)

and value V (b,π) = max
a∈A(E,b)

Q̂(b,a) (2)

where b ∈ B, E is the set of edges in T , and A(E,b) ⊆ A is the set of actions
that have been used to expand b, i.e., the actions that labelled the out-edges of
b in T . The value Q̂(b,a) denotes the estimated Q-value. Q-value Q(b,a) is the
value of performing action a from belief b and continuing optimally afterwards, i.e.,
Q(b,a) = R(b,a)+ γ ∑o∈O τ(b,a,o)V ∗(τ(b,a,o)). ABT estimates Q(b,a) as

Q̂(b,a) =
1∣∣H(b,a)
∣∣ ∑

h∈H(b,a)

V (h, l) (3)

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 7

where H(b,a) ⊆ H is the set of all episodes associated with all paths in T that start
from b0 and contains the sequence (b, a), l is the depth level of b in T , and V (h, l)
is the value of an episode h starting from the lth element. V (h, l) is computed as

V (h, l) =
|h|
∑
i=l

γ
i−lR(hi.s,hi.a) (4)

where γ is the discount factor and R is the reward function. Note that each state in
the lth quadruple of each episode in H(b,a) is a particle of b and the action in that
quadruple is the action a. Therefore, it is clear that Q̂(b,a) approximates the first
component of Q(b,a) well. However, it may seem odd that eq. (3)-(4) can approx-
imate the second component of Q(b,a), which is ∑o∈O τ(b,a,o)V ∗(τ(b,a,o)), as
V (h, l + 1) for different h may correspond to different policy. It turns out by us-
ing an appropriate action selection strategy when sampling the episodes, one can
ensure that as the number of episodes in H(b,a) increases, V (h, l + 1) converges to
∑o∈O τ(b,a,o)V ∗(τ(b,a,o)) in probability. This convergence result is based on the
convergence result of POMCP [21]. The action selection strategy is discussed in
Section 4.1 while the convergence result is discussed in Section 4.3.

The above policy representation and value calculation enable ABT to quickly
identify and update the policy following changes in the POMDP model. To identify
which parts of the policy need to be updated, ABT only needs to find the episodes
in H that contain states that are affected by the changes in the POMDP model. To
update the policy, ABT disconnects the association between each affected episode
h and its corresponding nodes in T , revises h according to the new POMDP model,
and associates it back with the nodes of T (which may be different than the previ-
ously associated path). Then, ABT updates the values and Q-values of beliefs that
have new association or disassociation with h. Using eq. (2)-(4), the value and Q-
value revisions require only simple arithmetic calculation. With proper data struc-
ture, these values can be updated incrementally, and finding the affected episodes
and the process of association and disassociation can be done fast. Details on the
identification and policy update process are presented in Section 4.2.

4 Offline and online policy computation and update
ABT starts by computing a good approximation to the optimal policy for the a priori
POMDP model, offline. During runtime, if the environment and hence the POMDP
model changes, ABT identifies subset of the policy that needs to be updated and
updates it. Otherwise, ABT improves its current policy. Algorithm 1 presents an
overview of ABT.

4.1 Sampling the episodes
The key strategy in generating an initial policy (GENERATE-POLICY function)

and improving a policy (IMPROVE-POLICY function) are the same, which is in
sampling the episodes. The overall sampling strategy of ABT is in Algorithm 2.

To sample a new episode, ABT starts by sampling a particle state s ∈ S from
a given starting belief bstart ∈ B. For the offline policy generation GENERATE-
POLICY function, the starting belief is always the given initial belief, while for

8 Hanna Kurniawati and Vinay Yadav

Algorithm 1 Adaptive Belief Tree (b0)
PREPROCESS (OFFLINE)
(H, T) = GENERATE-POLICY(P0, b0). {Pi is the POMDP model at time-i.}
Let S′ be the set of all sampled states in H, i.e., S′ = {hi.s | i ∈ [0, |h|],h ∈ H}
LetR be a range tree representation of S′.
b = b0.

RUNTIME (ONLINE)
while running do

if Pt 6= Pt−1 then
H ′ = IDENTIFY-AFFECTED-EPISODES(Pt−1, Pt , H,R, T).
REVISE-EPISODES(Pt , T , b, H ′).
UPDATE-VALUES(T , b, H ′).

while there is still time do
IMPROVE-POLICY(Pt , H,R, T , b).

a = Get best action in T from b.
Perform action a.
o = Get observation.
b = τ (b, a, o).
t = t +1.

IMPROVE-POLICY, the starting belief is the belief at the current time. After a
state is sampled, ABT selects an action and uses the generative model to sample an
observation, reward, and next state (line 7–15, 20–30).

To select an action from state s ∈ S that corresponds to node b in T , ABT uses
two strategies. First is the UCB strategy [1, 21], which is used when all actions in A
have been used to expand b at least once (line 8–9). UCB strategy frames the action
selection problem from each node as a multi-arm bandit problem. Multi-arm ban-
dit problem is a reinforcement learning problem to select a sequence of actions, so
as to maximize the total reward when the rewards for selecting the actions are not
known in advance. This problem is essentially a problem of balancing exploration
and exploitation, i.e., should one uses the action that has shown good performance
so far even though it may not be the best action (exploitation) or should one tries
other actions that have not shown good performance but may actually be the best
action (exploration). To select an action using UCB strategy, ABT uses UCB1 algo-
rithm [1], which selects an action according to

a = argmax
a∈A

(
Q̂(b,a)+ c

√
log(|Hb|)
|H(b,a)|

)
(5)

where Hb is the set of episodes in H that has been associated with b, H(b,a) is the
set of episodes in H that corresponds to sequence (b,a), |.| is size of a set, and
c is a scalar factor that determines the ratio between exploration and exploitation.
UCB1 algorithm is one of the best multi-arm bandit solutions when the reward of
performing an action follows a stationary distribution, which may not be known
in advance. UCB1 algorithm has also been used for action selection by the fastest
online POMDP solver today [21], and has been shown to enable convergence to the
optimal policy [11, 21].

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 9

Algorithm 2 SAMPLING-AN-EPISODE(P, T , bstart , H, ε)
1: b = bstart
2: Let l be the depth level of node b in T .
3: Let s be a state sampled from b.

The sampled state s is essentially the state at the lth quadruple of an episode h′ ∈ H.
4: Initialize h with the first l elements of h′.
5: Initialize doneMode as UCB.
6: Let A be the action space of POMDP model P.
7: while γ l > ε AND doneMode == UCB do
8: Let A′ be the set of actions that labelled the edges from b in T .
9: if |A′|== |A| then

10: a = UCB-ACTION-SELECTION(T , b).
11: else
12: a = an action sampled from A\A′ uniformly at random.
13: doneMode = Rollout.
14: (o,r,s′) = GenerativeModel(P, s, a).
15: Insert (s,a,o,r) to h.
16: Add hl .s to the set of particles that represent belief node b and associate b with hl .
17: s = s′

18: b = child node of b via an edge labelled a-o. If no such child exist, create the child.
19: l = l +1.
20: if doneMode == Rollout then
21: Let p be a number sampled uniformly at random from [0,1].
22: if p < ppolicy then
23: r = ROLLOUT-POLICY(T , s, b).
24: rolloutUsed = policy.
25: else
26: r = ROLLOUT-DET(P, s).
27: rolloutUsed = deterministic.
28: else
29: r = GenerativeModel(P, s).
30: Insert (s,−,−,r) to h.
31: Add hl .s to the set of particles that represent belief node b and associate b with hl .
32: valueImprovement = UPDATE-VALUES(T , h)
33: ppolicy = UPDATE-ROLLOUT-PROB(rolloutUsed, valueImprovement).
34: Insert h to H.

When the condition for using UCB is not satisfied, ABT selects an action towards
satisfying the condition of UCB using rollout strategy. To select an action from state
s∈ S that corresponds to node b of T , rollout strategy samples an action a uniformly
at random from the set of actions that has not been used to expand b (line 12).

Furthermore, to generate a good policy fast, ABT also tries to compute a good
estimate of the Q-value Q(b,a) in its rollout strategy (line 21–27). A good estimate
of the Q-value will help the UCB strategy to converge faster to the optimal action
once the condition to run UCB strategy has been satisfied. If the time to generate or
improve the policy has run out before the condition to run UCB is satisfied, a good
estimate of the Q-value helps ABT choose a good action.

To estimate the Q-value during rollout, ABT uses two heuristics. Suppose rollout
strategy selects action a ∈ A to be performed from state s ∈ S that corresponds to
node b of T . The first heuristic to estimate Q(b,a) assumes the problem is determin-
istic (line 26). ABT uses methods from deterministic motion planning to find a good

10 Hanna Kurniawati and Vinay Yadav

solution. It calculates the total reward if the robot starts from state s, performs action
a, and continues optimally, assuming the system is deterministic. This total reward
is the estimated Q-value of this heuristic and the output of ROLLOUT-DET in line
26. The second heuristic is based on existing policy (line 23). For this purpose, ABT
first uses the generative model to sample an observation o ∈ O, computes the belief
b′= τ(b,a,o) using particle filter, and finds the node in T nearest to b′. Any distance
metric for distributions can be used. ABT assumes that the state space is a metric
space, which is mostly the case for robotics tasks, and defines the distance between
two beliefs as the expected state space distance assuming the two beliefs are inde-
pendent. Suppose the nearest node to b′ is b̂′. If the distance between b′ and b̂′ is
more than a given threshold, ABT uses ROLLOUT-DET to estimate the Q-value.
Otherwise, ABT assumes that b′ is equal to b̂′. It simulates the robot’s movement
according to the policy embedded in T starting from b̂′, until a leaf node of T is
reached. The total discounted reward gathered during this simulation becomes this
heuristic’s estimate of the Q-value Q(b,a) and the output of ROLLOUT-POLICY
in line 23.

Now, the question is which heuristic should be used at a particular rollout op-
eration. This problem is similar to the action selection problem discussed earlier
in this section, and similarly ABT frames the problem of choosing which heuris-
tic to use as a multi-arm bandit problem. However for simplicity, this selection is
valid globally instead of per belief node as in the case with action selection. Due
to this simplification, we cannot use UCB1, as it assumes that the rewards follow
a stationary distribution. Instead, we use Exp3 [2], one of the best multi-arm ban-
dit solutions when no statistical assumptions are made about the underlying reward
function. Furthermore, Exp3 has been shown to be competitive to the strategy that
uses the best action at each step. Using Exp3, ABT assigns a probability to each
heuristic strategy, and selects which heuristic to use based on this probability (line
22). The probability is adapted based on how much the heuristic improves the value
of the starting belief (line 33), as follows

pi(t +1) = (1− cr)
wi(t +1)

w1(t +1)+w2(t +1)
+

cr

2

where wi(t +1) = wi(t)exp
(

cr (max(0,Vt(bstart)−Vt−1(bstart))

2pi(t)

)
(6)

where i ∈ [1,2] indicates the different heuristics, t is the current time step, and cr ∈
(0,1) is the ratio between exploration and exploitation.

4.2 Handling changes in the POMDP model
When the POMDP model changes, ABT identifies a subset of the policy that is af-
fected by the changes (IDENTIFY-AFFECTED-EPISODES function) and updates
it (REVISE-EPISODES and UPDATE-VALUES functions).

To identify a subset of the policy that are affected by changes in the POMDP
model, ABT needs to identify the set Sch ⊆ S of states affected by the changes, i.e.,

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 11

all states s ∈ S where the robot’s behaviour in s changes. In this paper, we do not
focus on how to identify changes in the POMDP model. Instead, we assume that
either changes in the POMDP model can be identified easily by identifying changes
in the environment map, or the user provides information on the set of affected states
Sch.

Once the set Sch of affected states is known, ABT finds the set of episodes
affected by the changes. An episode h ∈ H is affected by the changes in the
POMDP model if at least one of its state element is affected by the changes, i.e.,
∃ i ∈ [0, |h|] hi.s ∈ Sch.

To facilitate fast identification of affected episodes, ABT structures the set S′ ⊆ S
of all sampled states, i.e., the set of all states in each sampled episode S′ = {hi.s | i∈
[0, |h|],h ∈ H}, in a range tree denoted as R. Since multiple episodes may contain
the same state, ABT labels each state s∈ S′ with a set of two-tuple (h, idx) indicating
which episodes h of H and which index idx element of h contain s.

To identify episodes in H that are affected by the changes in the POMDP model,
ABT finds the intersection between the set Sch of affected states and the set S′ of
sampled states. For this purpose, ABT constructs a bounding rectangle for each
connected component of Sch. Here, rectangle is used in a general sense, referring
to hyper-rectangle when the dimension of S is more than two. Then, ABT solves
a rectangular query on the range tree R for each bounding rectangle and checks if
the states resulting from the rectangular queries are indeed in Sch. The results of the
rectangular queries that lie in Sch are sampled states that are affected by the changes
in the POMDP model. The two-tuple labels associated with these sampled states
indicate the episodes that are affected by the changes in the POMDP model.

Assuming the range tree has been constructed, the above identification proce-
dure takes O

(
logdim(S) |S′|+ k+ |H ′|

)
, where dim(S) is the dimension of the state

space S and k is the total number of states outputted by all rectangular range
queries [6]. The first construction of the range tree, which happens offline, takes
O(|S′0| logdim(S)−1 |S′0|), where S′0 is the set of all sampled states right after the of-
fline policy generation. During runtime, the time to insert the state of the newly
sampled quadruple to the range tree is O(logdim(S)−1 |S′t |), where S′t is the set of all
sampled states at time t.

Once the set H ′ ⊆ H of affected episodes are identified, ABT revises affected
elements of all episodes in H ′ according to the new POMDP model. Suppose h∈H ′

is an affected episode to be revised. First, ABT finds the lowest element index idx
of h where the state is affected by model changes. Then, ABT revises the episode
starting from element index idxu = max(0, idx−1) of h until the last element. When
idxu = 0, ABT erases the episode h from H, because in this case the entire episode
needs to be revised, which means the episode is not reusable and the results would
be similar as if ABT samples an entirely new episode. If idxu > 0, ABT uses the
generative model to re-sample the sequence of observations perceived, rewards re-
ceived, and next states visited, when the sequence of actions from element idxu until
the last element of h is performed, starting from the state in element idxu of h. When
this sequence of actions is obviously sub-optimal, e.g., when it causes the robot to
collide with a newly added obstacle, ABT uses heuristics to modify the sequence

12 Hanna Kurniawati and Vinay Yadav

of actions. The heuristics is the same as that used in ROLLOUT-DET (line 26 of
Algorithm 2). It assumes the problem is deterministic and uses methods from deter-
ministic motion planning to find a good sequence of actions. Finally, ABT replaces
the content of the quadruples of h with the re-sampled sequence of observations,
rewards, and next states, at the respective indices. This revision of h ∈ H ′ triggers
re-computation of the values and Q-values of all beliefs in T that correspond to h,
and hence update the policy embedded in T .

4.3 Convergence to an optimal policy
ABT converges in probability to the optimal policy from the current belief under the
current POMDP model.

First, let us discuss the case when the POMDP model does not change. Key to
ABT’s convergence is the strategy for sampling the episodes H (Section 4.1), in
particular the action selection strategy. ABT frames the problem of selecting an
action when sampling an episode, as a multi-arm bandit problem and uses UCB1
algorithm. This action selection strategy has been proven to enable convergence to
the optimal policy in probability, regardless of the rollout strategy being used [21].
In fact, [21] has shown that Q̂(b,a) will converge to the optimal Q-value with a rate
of O(log(|HΓ (b)|)/|HΦ(b)|), where HΦ(b) ⊆ H is the set of episodes that correspond
to paths in T that starts from b0 and contains node b, and |.| is the size of a set.
When Q̂(b,a) converges to the optimal Q-value, the value V̂ (b) converges to the
optimal value function and the corresponding π(b) converges to the optimal policy.

When the POMDP model changes, the existing policy that has been revised can
be considered as an initial policy. When enough time is given to improve the pol-
icy, the number of sampled episodes keeps increasing, such that the quality of the
policy will eventually be dominated by the results of the episode sampling strategy.
Therefore, the above results remain valid when the POMDP model changes.

5 Experiments
5.1 Robotics tasks

Fig. 2 Underwater Navigation.
|St=0...9| = 2,652, |St≥10| = 2,274,
|A| = 5, |Ot=0...9| = 104,
|Ot=10...19| = 142, |Ot≥20| = 138.
Black line is a path generated by ABT.

We have tested ABT on three robotics tasks
that require the POMDP model to be modified
several times during runtime. To ensure that
changes in the environment affect the solution
to the problem regardless of how fast or slow
a solver is, we define changes in terms of time
steps. The three test scenarios are as follows.
Underwater navigation. An Autonomous Un-
derwater Vehicle (AUV) navigates in an envi-
ronment populated by obstacles and vortices
that are not known a priori. In the beginning,
we only know the start and goal regions, and
the positions of underwater beacons where the
AUV can localize perfectly (labelled ‘O’). Dur-

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 13

ing run time, at time step 10, the obstacles (dark grey) become known. These ob-
stacles possess unique features that can be used by the AUV to localize itself, but
at the same time obstruct some of the underwater beacons. To reflect these new in-
formation, the POMDP model is modified; the number of states reduces while the
number of observation increases. At time step 20, the vortex (light grey with cross
mark) becomes known. The POMDP model again changes to reflect the vortex.

The AUV may start from one of the two possible regions labelled ‘S’ and needs
to reach the goal region labelled ‘G’ while avoiding obstacles and being dragged in
a vortex region. The environment is represented as a uniform grid of size 51×52.
At each step, the AUV can move one cell in 5 directions, i.e., East, North, South,
Northeast, and Southeast. Due to underwater current, the AUV movement is accu-
rate only 80% of the time. The rest of the time, it reaches the left or right of the
intended destination with equal probability. The AUV does not have a GPS, but can
localize perfectly at cells marked by ‘O’. At other cells, no observations are per-
ceived. The AUV receives a high reward for reaching the goal, a small penalty for
every action taken, and a high penalty for being in the vortex region.

Fig. 3 Homecare. |S| = 1,926,912,
|A|= 9, |O|= 200,000.

Homecare. A robot is deployed for caretak-
ing purposes in a home environment. The robot
needs to find and attends to an elderly whenever
she needs assistance. The elderly moves around
in the house, starting from one of the regions la-
belled ‘T’. Her motion is non-deterministic: At
each step, she may pause or continue following
one of several paths (marked by dashed line).
She is likely to stop for longer time in places
marked ‘W’, which represents washroom, re-
gions near dining table, TV, or refrigerator. At
time step 30, 60, 90, and 120, new furnitures
and appliances where the elderly may pause
longer are added (labelled ‘W’). To reflect these

changes, the transition function of the POMDP model is modified accordingly.
The environment is populated by obstacles (dark grey) and is represented as a

uniform grid of size 50×50. The robot starts from a region marked by ‘S’. At each
step, the robot may stay or move one cell in one of the 8 wind directions. Its motion
is accurate only 80% of the time. The rest of the time, it reaches the left or right
of the intended destination with equal probability. The elderly calls the robot when-
ever assistance is needed and turns off the call when assistance is no longer needed.
When a call is made, the elderly pause at her current location until the robot comes
or until assistance is no longer needed. The robot receives a high reward whenever
it reaches the elderly when assistance is still needed. A small penalty is imposed
for every move the robot takes to discourage it from wasting energy. The robot has
access to four types of observations. First is a GPS. Second is a visibility sensor that
enables the robot to localize the elderly exactly if she is within 1 cell away from the
robot. Third is from four sensors mounted on the ceiling. These sensors divide the
home into four equal regions and can identify which region the elderly is in with

14 Hanna Kurniawati and Vinay Yadav

90% accuracy. The rest of the time, the sensor wrongly identifies the region where
the elderly is in with equal probability. Last is observation on whether the elderly
requires assistance, which is 100% accurate.

Fig. 4 Target Finding. |S|= 923,520,
|A|= 9, |O|= 100,000.

Target finding. This problem is similar to
homecare, but here the goal is for the robot
to quickly find the elderly, while she is mov-
ing in the house. The environment is slightly
more complex than homecare, due to additional
obstacles. Similar to homecare, the elderly be-
haviour changes with the addition of new fur-
nitures and appliances. The changes (time step
30 and 60) are reflected in the transition func-
tion. The robot’s dynamics are the same as in
homecare. The robot’s observations are also the
same as homecare, but without observation on
whether the elderly needs assistance.

5.2 Experimental setup
We implement ABT in C++ and test it on the above tasks. To calculate the quality
of the motion strategies generated by ABT, we estimate the expected total reward of
using ABT to solve each task. To this end, for each task, we first ran a few trial runs
to determine the best parameters for ABT to use. Then, we use the best parameters
for each task to generate 30 different offline policies. Finally, for each task and each
policy, we run 100 simulation runs and computes the total reward of each simulation.
The average of these 3,000 simulation runs is the estimated expected total reward.

As a comparator, we also apply POMCP [21], the fastest online POMDP solver
today, on the above tasks. For POMCP, we use the software released by the original
author, which is written in C++. Similar to ABT, for each task, we first ran a few trial
runs to determine the best parameters for POMCP to use. These parameters include
the use of additional heuristic to help POMCP’s rollout function performs better
(knowledge option in POMCP software). We use the best parameters to run 500
simulation runs for each task. The average of these simulation runs is the estimated
expected total reward generated by POMCP for solving the task.

All experiments are conducted in a PC with Intel Xeon E5-1620 3.6GHz proces-
sor and 16GB RAM.

5.3 Results
The results of ABT and POMCP are in Table 1. All values in Table 1 are in the form
of average ± 0.95 confidence interval. POMCP recomputes the solution at each
step using 1,024 particles (note: The POMCP s/w always recomputes from scratch).
ABT improves the solution using an additional 1,000 or 2,500 unweighted particles
per step. The first column shows the expected total discounted reward. The second
column shows the time ABT uses for preprocessing, to generate an initial policy
for the a priori POMDP model. POMCP does not perform any preprocessing. The
last column shows the average online computation time ABT and POMCP use at

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment 15

Online Computation Time
Total Discounted Offline Computation Average Time/Step

Reward Time (ms) (ms)
Underwater navigation
POMCP∗ 138.98 ± 47.77 – 754.00 ± 11.23
ABT 1 185.50 ± 38.23 364.00 ± 45.96 42.90 ± 0.25
Homecare
POMCP∗ 2,251.04 ± 275.98 – 1,933.75 ± 13.80
ABT 1 2,297.34 ± 102.91 63.33 ± 5.82 16.12 ± 0.11
ABT 2 2,509.38 ± 104.53 63.33 ± 5.82 39.98 ± 0.15
Target finding
POMCP∗ 2,237.12 ± 142.32 – 1,221.95 ± 6.59
ABT 1 2,284.69 ± 60.28 63.00 ± 5.65 15.12 ± 0.16
ABT 2 2,594.35 ± 60.28 63.00 ± 5.65 44.61 ± 0.33

Table 1 Performance comparison. ∗: Use 1,024 particles/step. 1: Improve with 1,000 particles/step.
2: Improve with 2,500 particles/step.

each step. The average time per step for ABT includes the time to improve existing
policy and to update the policy when the POMDP model changes. The average time
to perform one policy update for underwater navigation is (87.42±1.13)ms, while
the average policy update of all ABT runs for homecare and target finding are less
than 1.5 ms, which is below the timer accuracy of our computer system (4 ms).

The results show that in all three scenarios, ABT significantly outperforms
POMCP. It can generate similar or better motion strategies up to 120× faster than
POMCP. By reusing existing policy, ABT can focus its search faster on parts of the
belief space that are most promising for generating the best action strategy from the
current belief under the current POMDP model.

In underwater navigation, ABT requires more offline and online computation
time, compared to homecare and target finding, even though the size of state, ac-
tion, and observation spaces are smaller. The reason is underwater navigation re-
quires longer planning horizon and has more complex geometry, compared to the
other two problems. As a result, it takes more time to compute the deterministic
motion planning heuristic, one of the heuristics used to estimate the Q-value (step
26 of Algorithm 2). This computation is also the reason why policy update time
for underwater navigation takes much longer than the other two problems. A more
efficient implementation of the deterministic motion planner will reduce the offline
and online computation time of underwater navigation.

6 Summary
This paper proposes a new online POMDP solver, called ABT, that reuses and im-
proves existing policy, and updates the policy as needed whenever the POMDP
model changes. It is designed for POMDP problems with continuous state space
and uses a generative model. We have successfully tested ABT on three different
robotics tasks in dynamic environment, where each task requires the POMDP model
to change several times during runtime, so as to reflect the environment correctly.
Simulation results on these test scenarios show that ABT generates similar or bet-
ter motion strategies faster than the fastest online POMDP solver today. In all test
scenarios, ABT requires an average of less than 400 ms of preprocessing time, and

16 Hanna Kurniawati and Vinay Yadav

an average of less than 50 ms of online computation time at each step. These results
suggest that ABT brings POMDP a step closer to become practical for non-trivial
robotics tasks in uncertain and dynamic environments, even when the environment
dynamics are unknown in advance, a class of robotics tasks often deemed too diffi-
cult to be solved using POMDP approach.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning, 47(2-3):235–256, May 2002.

2. P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The non-stochastic multi-armed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2003.

3. H. Bai, D. Hsu, W.S. Lee, and A.V. Ngo. Monte Carlo Value Iteration for Continuous-State
POMDPs. In WAFR, 2010.

4. J.v.d. Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized Path Planning for Robots with
Motion Uncertainty and Imperfect State Information. In RSS, 2010.

5. J.v.d. Berg, D. Wilkie, S.J. Guy, M. Niethammer, and D. Manocha. LQG-Obstacles: Feedback
Control with Collision Avoidance for Mobile Robots with Motion and Sensing Uncertainty.
In ICRA, 2012.

6. M.d. Berg, O. Cheong, M.v. Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2000.

7. K. Hauser. Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces.
In WAFR, 2010.

8. R. He, E. Brunskill, and N.Roy. PUMA: planning under uncertainty with macro-actions. In
AAAI, 2010.

9. M. Horowitz and J. Burdick. Interactive Non-Prehensile Manipulation for Grasping Via
POMDPs. In ICRA, 2013.

10. K. Hsiao, L.P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs. In ICRA, pages 4685–
4692, 2007.

11. L. Kocsis and C. Szepesvri. Bandit based monte-carlo planning. In In: ECML-06. Number
4212 in LNCS, pages 282–293. Springer, 2006.

12. H. Kurniawati, Y. Du, D. Hsu, and W.S. Lee. Motion planning under uncertainty for robotic
tasks with long time horizons. IJRR, 30(3):308–323, 2011.

13. H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In RSS, 2008.

14. H. Kurniawati and N.M. Patrikalakis. Point-Based Policy Transformation: Adapting Policy to
Changing POMDP Models. In WAFR, 2012.

15. S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. Planning under uncertainty for robotic tasks
with mixed observability. IJRR, 29(8):1053–1068, 2010.

16. C.H. Papadimitriou and J.N. Tsitsiklis. The Complexity of Markov Decision Processes. Math.
of Operation Research, 12(3):441–450, 1987.

17. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In IJCAI, pages 1025–1032, 2003.

18. R. Platt, R. Tedrake, T. Lozano-Perez, and L.P. Kaelbling. Belief space planning assuming
maximum likelihood observations. In RSS, 2010.

19. S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Linear POMDPs by Fac-
toring the Covariance. In ISRR, 2007.

20. S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for POMDPs.
JAIR, 32:663–704, 2008.

21. D. Silver and J. Veness. Monte-Carlo Planning in Large POMDPs. In NIPS, 2010.
22. T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In UAI, 2004.
23. T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and imple-

mentation. In UAI, July 2005.
24. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2012.
25. S. Thrun. Monte carlo POMDPs. In NIPS, pages 1064–1070, 2000.

